注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
は有限の値に収束しないことで有名です。これは、閉領域 の面積が無限大であることを意味します。 とこ... は有限の値に収束しないことで有名です。これは、閉領域 の面積が無限大であることを意味します。 ところが、この領域を x 軸を中心に回転した回転体の体積 V を求めると となり、何と有限(!!)になってしまいます。これはトリチェルリ*1が 1644 年に見つけたもので、無限に伸びる立体が有限の体積を持つことから、当時としてみればかなり衝撃的な発見だったようです。この回転体は "Torricelli's trumpet" または "Gabriel's horn" と呼ばれています。 参考サイト : Torricelli's Trumpet or Gabriel's Horn なお、この例は、広義積分が考えられた最初の例でもあるそうです。 *1:Evangelista Torricelli(1608-1647) Torricelli's trumpet は体積は有限確定であることは先程見ました。
2006/01/13 リンク