ï¼ï¼å¹´ç®ã®æ¸ç±å ï½ ç¾ä»£çµæ¸å¦ã®ç´è¦³çæ¹æ³

ãç§ã¯ï¼ï¼å¹´åã«ãã®æ¬ã®ãã¼ã¹ã¨ãªãè«èã«åºä¼ã大ããªè¡æãåãããã
ããã¦ã徿¸ãã®ä¸æã«çç®ã
ãè¶³ããï¼ï¼å¹´ã®å½¢ã§æ¬æ¸ã®æ¸ç±åã«é¢ãã£ã¦ããã ããã»ã»ã»ã»ã
ã¤ã¾ãããã®æ¬ã®ãã¼ã¹ã¯ä½ã¨ï¼ï¼å¹´åããåå¨ãã¦ããã®ã§ãã
ï¼ï¼å¹´åããå¯ãã«åºåã£ã¦ãããè¨ã£ã¦ãã¾ãã°ããå
輪åãã®ããã¹ããã
å»ãããã¨ãªãå°ããã¤å çã»ä¿®æ£ãç¹°ãè¿ããã¤ãã«å
¬ã«æ¸ç±åãããã¨ããã®ããã®æ¬ãªã®ã§ãã
ã»ã»ã»ã¡ãã£ã¨ç°ä¾ã®çµç·¯ã ã¨æãã¾ãã
èãã¦ã¿ã¦ãã ããããã®ï¼ï¼å¹´éãçµæ¸ã®ä¸çã§ã©ãã»ã©ã®æ¿åããã£ããã¨ãã
ãã®éãå¤å°ã®ä¿®æ£ã¯ããã©ãè¯ãå
¨ããã¬ã¦ããªããæ£ç´ãããã ãã§ãé©ãã§ãã
ç§ããã®å
輪åãã®ããã¹ããæåã«èªãã ã®ã¯ï¼ï¼ï¼ï¼å¹´ãããï¼ï¼å¹´åã«ãªãã¾ãã
ããã¦ãâå¸ææ´»åâãéå§ããã®ãï¼ï¼å¹´åã§ãã
rikunora.hatenablog.com
ä»åã®æ¸ç±åã«ããããå¤ãé»åçã®æ¹ã¯è²©å£²ã䏿¢ãã¾ãã
å¤ãçã«ãªãã¾ãããåé é¨åã ãã¯è©¦ãèªã¿ãã§ãã¾ãã
* æ§ï¼é»åç -- 第ï¼ç« ã®è©¦ãèªã¿
>> http://book.motion.ne.jp/pathfind/Economy_Sample.pdf
ã§ãå
輪ã®äººãä½ãè¨ã£ã¦ããã¤ã¢ã¹ããããã®ã§ããã
ãããããæãããã£ã¦ãç°ä¾ã®çµç·¯ãçµã¦ä¸ã«åºãã
ã¨ããäºå®ã®ã¿ãä¼ãã¦ããã¾ãã

ç¾ä»£çµæ¸å¦ã®ç´è¦³çæ¹æ³
- ä½è :é·æ²¼ 伸ä¸é
- çºå£²æ¥: 2020/04/09
- ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼
â» æ¬æ¸ã¨ä¼¼ãã«ã©ã¼ãæã¤âï¼ï¼ï¼å¹´ã¨æ¯ã¹ã¦ï¼ããæè¿ã®ãã¹ãã»ã©ã¼âã«ããããªæ¬ãããã¾ãã

- ä½è :å®å® å人
- çºå£²æ¥: 2020/02/20
- ã¡ãã£ã¢: åè¡æ¬

- ä½è :ã¤ãã¹ã»ãã«ãã¡ãã¹
- çºå£²æ¥: 2019/03/07
- ã¡ãã£ã¢: Kindleç
â» å®ã¯ãã®ãç¾ä»£çµæ¸å¦ã®ç´è¦³çæ¹æ³ããæ±ºãã¦ä¸äººã«åããå
容ã§ã¯ç¡ãã ããã¨ï¼ç§ã¯ï¼æã£ã¦ãã¾ãã
â» ãã ãä¸ã®ï¼åã«é¢å¿ã®ãã人ãªãã°ãééããªãç´ç·ã«è§¦ãããã¨ãè«ãåãã¾ãã
ã³ããææè æ°ãã¼ã¿ã«ææ°æ²ç·ãã¦ã¯ã
ã¿ã¤ãã«ã®éããå
ãã¼ã¿ã¯ä»¥ä¸ããåå¾ãããã¯æ±äº¬é½ã®å ´åã
* æ±äº¬é½ãªã¼ãã³ãã¼ã¿ã«ã¿ãã°ãµã¤ã >> æ±äº¬é½ æ°åã³ããã¦ã¤ã«ã¹é½æ§æ£è
çºè¡¨è©³ç´°
>> https://catalog.data.metro.tokyo.lg.jp/dataset/t000010d0000000068
ãã¦ã¯ããçµæããããã
ãã®ã¾ã¾ï¼ï¼ï¼æ¥ãç´åå¹´ã«æéå»¶é·ãã¦ã¿ãã
â
ãã¡ããããã¯ç°¡æçãªãã¦ã¯ããªã®ã§ããã£ã¨ä¿¡é ¼ã®ãããäºæ¸¬ã¯ãSIRã¢ãã«ããªã©ã®ãã¼ã¯ã¼ãã§ã°ã°ã£ã¦ãã ããã
* COVID-19æ
å ±å
±æ >> https://www.fttsus.jp/covinfo/
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import curve_fit DATA_FILE = "130001_tokyo_covid19_patients.csv" # èªã¿è¾¼ãCSVãã¡ã¤ã« df = pd.read_csv( DATA_FILE ) df = df.rename( columns={"å ¬è¡¨_å¹´ææ¥" : "day"} ) # æ¥æ¬èªåããªãã¼ã ãã¦ããã df['day'] = pd.to_datetime(df.day) # æ¥ä»åã«å¤æ df['count'] = 1 # 1è¡1ä»¶ã¨ã«ã¦ã³ããã df = df[ ['day', 'count'] ] # ã«ã¦ã³ã以å¤ã¯åé¤ grouped = df.groupby("day").sum() # æ¥ä»ã§éè¨ x = np.array( grouped.index.map(pd.Timestamp.timestamp) ) # æ¥ä»->ç§æ°ã«å¤æ base = x[0] # ã¹ã¿ã¼ãã0æ¥ã¨ãã day_unit = (24*60*60) # ï¼æ¥åä½ã«å¤æãã x -= base x /= day_unit y = np.array( grouped['count'] ) # ãã£ããããã颿° def func( x, a, b ): return np.exp(a * x + b) # ææ°é¢æ°ããã¦ã¯ãã¦ã¿ãã params, _ = curve_fit( func, x, y ) plt.plot(x, y) plt.plot(x, func(x, *params)) plt.show()
â 2020/04/15 追è¨ãææ°ã§ã¯ãªãããã¸ã¹ãã£ãã¯æ²ç·ããã¦ã¯ããã«ã¯ã以ä¸ã®ããã«å·®ãæ¿ããã
# ãã£ããããã颿° def func( x, a, b ): max_pop = 9000000 # æ±äº¬é½ã®æå¤§äººå£ãï¼ç¾ä¸äººã¨ãã return ( max_pop / (1 + np.exp( -(a * x + b) ) ) )

ï¼ï¼ è¶ è¨³ã»ç©çå¦ ï¼ï¼
âã©ã°ã©ã³ã¸ã¢ã³âã¨âã¨ã³ãããã¼âããã®ï¼ã¤ãåãå ¥ããã°ãå¤å ¸ç©çå¦ã¯çè§£ã§ããã
ããã«âå é度âã¨âãã©ã³ã¯å®æ°âããã®ï¼ã¤ãåãå ¥ããã°ãç¾ä»£ç©çå¦ã¯çè§£ã§ããã
=== å¤å ¸åå¦ ===
ãç¸å¯¾æ§åçã
ããããæ £æ§ç³»ï¼è¦³æ¸¬è ã®ç«å ´ï¼ã¯åçã§ãããç¹å¥ãªæ £æ§ç³»ã¯åå¨ããªãã
ãæå°ä½ç¨ã®åçãï¼åçä½ç¨ã®åçï¼
ç©ä½ã®éåã«ã¨ããªã£ã¦å¤åããâã©ã°ã©ã³ã¸ã¢ã³âã¨å¼ã°ããéãããã
ããããç©ä½ã®éåã¯ãã©ã°ã©ã³ã¸ã¢ã³ã®åè¨å¤ï¼æéã«ã¤ãã¦ã®ç©åï¼ãæå°ã¨ããå½¢ã§å®ç¾ããã
ã©ã°ã©ã³ã¸ã¢ã³ã®åè¨å¤ã®ãã¨ãâä½ç¨âã¨ããã
ããå¤åã®å½±é¿ãåããªãç©ä½ã®éåã«ãä½ããã®æå°ä½ç¨ãæºãããããªå¤ãããã¨ããã°ã
ãããã®å¤ã¯ç¸å¯¾æ§åçãããé度ã®ï¼ä¹ã®é¢æ°ã§ãªããã°ãªããªãã
ãããã®é度ã®ï¼ä¹ã®é¢æ°ããæã
ã¯âéåã¨ãã«ã®ã¼âã¨å¼ãã§ããã
ããããã«ãç©ä½ããã®ä½ç½®ããåããå½±é¿ï¼å¤åã®å½±é¿ï¼ãâä½ç½®ã¨ãã«ã®ã¼âã¨å¼ã³ã
ãã{ï¼éåã¨ãã«ã®ã¼ï¼ï¼ï¼ä½ç½®ã¨ãã«ã®ã¼ï¼} ãâã©ã°ã©ã³ã¸ã¢ã³âã¨å®ç¾©ããã
ããããããç©ä½ã®éåã¯ã
ããããS = â« L dt
ãããããããã-- S:ä½ç¨, L:ã©ã°ã©ã³ã¸ã¢ã³, tï¼æå»
ãããåçå¤ãã¨ãå½¢ã§å®ç¾ããã
=== ç±ã»çµ±è¨åå¦ ===
ãã¨ã³ãããã¼å¢å¤§ã®æ³åã
ãããããã¯ããªç©äºã®å¤åã¯ãå®ç¾ãã確çãããé«ãæ¹ã¸ã¨åããã
ã¨ãããã¯ããªç¶æ
ãå®ç¾ãããããªããã¯ããªç¶æ
ã®å ´åã®æ°ã®å¯¾æ°ãâã¨ã³ãããã¼âã¨ããã
ããï¼³ = k log Wããããï¼ãã«ããã³ã®é¢ä¿å¼ï¼
ãããã-- ï¼³:ã¨ã³ãããã¼, k:ãã«ããã³å®æ°, W:ãã¯ããªç¶æ
æ°
ã¨ã³ãããã¼ã¯ããããå¤åã®å®è³ªçãªåååã§ãããããããå¤åã¯ã¨ã³ãããã¼ãå¢å¤§ããæ¹åã«é²ãã
=== ç¹æ®ç¸å¯¾æ§çè« ===
ä½ç¨ã¯é¢ããå ´æã«ç¬æã«ä¼ããã®ã§ã¯ãªããä¼ããé度ã«ã¯ä¸éãããã
ãã®ä¸éå¤ã¨ã¯ãå
é度ã®ãã¨ã§ããã
ãå é度ä¸å¤ã®åçã
ç空ä¸ã®å
ã®éãã¯ãå
æºã®é度ã«ããããã©ããªæ
£æ§ç³»ããè¦ã¦ãä¸å®ã¨ãªãã
ããâ
ç°ãªãæ
£æ§ç³»ã®éã§ãæéã®çµéãï¼ç¹éã®è·é¢ã¯ãä¸è¬ã«ã¯ç°ãªãã
æç©ºéã®åºæºã¨ãªãã¢ããµã·ã¯ãç¹å®ã®æ
£æ§ç³»ã«ãããï¼ç§ã®é·ããï¼ã¡ã¼ãã«ã§ã¯ãªããå
ã®éãã§ããã
ç°ãªãè¤æ°ã®æ
£æ§ç³»ããè¦ã¦ããã¤ã§ãå
é度ãä¸å®ã«ãªãããã«ãæéã¨è·é¢ã¯èª¿æ´ããã¦ããªããã°ãªããªãã
ããâ» ãã®èª¿æ´æ¹æ³ã®ãã¨ãâãã¼ã¬ã³ã夿âã¨ãããèª¿æ´æ¸ã¿ã§ãããã¨ãâãã¼ã¬ã³ãä¸å¤âã¨ããã
=== ä¸è¬ç¸å¯¾æ§çè« ===
ãç価åçã
éåã«ããå éã¨ãç©ä½ã®éåã«ããå éã¯ç価ã§ãããåºå¥ã§ããªãã
ããâ
æã
ã®ä½ãæç©ºéã¯ãï¼ã¦ã¼ã¯ãªãã空éã¨æ¯ã¹ã¦ï¼å
ãã«æªãã§ããã
æªãã æç©ºéã®ä¸ããç©ä½ãã¾ã£ããæççµè·¯ã§éåããæ§åãå¤ããè¦ãã¨ï¼å¥ã®æ
£æ§ç³»ããè¦ãã¨ï¼ãããããç©ä½ãåãåãã¦ãããã®ããã«è¦ããã
ãã®åã®ãã¨ããæã
ã¯âéåâã¨å¼ãã§ããã
=== å ´ã®çè« ===
éåã空éã®å¹¾ä½å¦çãªæªã¿ã¨ãã¦çè§£ã§ããããã«ããããã種é¡ã®åãä¾ãã°é»ç£æ°åãªã©ãã¾ãããã種ã®ç©ºéã®å¹¾ä½å¦çãªæªã¿ã¨ãã¦çè§£ãããã¨ãã§ããã
ããâ» ãã種ã®ç©ºéã®ãã¨ãâå ´ï¼Fieldï¼âã¨ããã
ããããå ´ã¯ããã¼ã¬ã³ãä¸å¤ã§ããï¼å é度ä¸å¤ã®åçãæºããï¼ã
ããããã®å ´ã«ã¯ã対å¿ããâã©ã°ã©ã³ã¸ã¢ã³âãããã
ããããã®å ´ã«ãããéåããã¯ãã対å¿ããã©ã°ã©ã³ã¸ã¢ã³ã®ä½ç¨ãæå°ã¨ãªãå½¢ã§å®ç¾ãã¦ããã
=== éååå¦ ===
ããããç©ä½ã¯ãï¼ä¹ããã¨ï¼è¤ç´ å
±å½¹ã¨æãåãããã¨ï¼åå¨ç¢ºçã¨ãªããããªãè¤ç´ æ°ã®æ³¢åããæãç«ã£ã¦ããã
æ³¢åã¨ã¯ãæ¯å¹
ã¨ä½ç¸ãæã¤ä½ããã®è¤ç´ æ°ã®éã®å¤åãªã®ã ãããã®å
¨å®¹ãæã
ãç´æ¥è¦³æ¸¬ãããã¨ã¯ã§ããªãã
æã
ãç´æ¥è¦³æ¸¬ã§ããã®ã¯ãæ³¢åã®å®æ°æåã ãã§ããã
ãä¸ç¢ºå®æ§åçã
ä½ç¨ã«ã¯ããã以ä¸åå²ã§ããªãæå°åä½ãããã
æå°åä½ããå°ããªå¤ã¯ãã©ãããã°ã£ã¦ãå®ãããã¨ãã§ãããä¸å®ãªéãæ®ãã
ããâ» ãã®æå°åä½ãâãã©ã³ã¯å®æ°âã¨ããã
æå°åä½ã®ãããä½ç¨ãä¸ããããå ´ã¯ã颿£çã«ã«ã¦ã³ãã§ããï¼ï¼å, ï¼å, ï¼å・・・ã¨åºå¥ãã¦æ°ãããã¨ãã§ããï¼ç¶æ
ãã¨ãã
ãã®ã«ã¦ã³ãã§ããç¶æ
ã®ãã¨ããæã
ã¯âç²åâã¨å¼ãã§ããã
ããããç©ä½ã¯ãè¤ç´ æ°ã®æ³¢ã§ããã¨åæã«ç²åã§ãããï¼ç¶æ
ãã«ã¦ã³ãã§ããæ³¢ã§ããï¼ã
対象ãã«ã¦ã³ãã§ããç¶æ
ã«ãããã¨ã ï½ ã¤ã¾ãâç²åâã ã¨è¦ãªãããã¨ããâéååããã¦ããâã¨ããã
ããããå ´ã¯ãéååããã¦ãã ï½ ã¤ã¾ãâç²åâã ã¨è¦ãªããã
=== ç¡éã»è¨ç®çè« ===
ç¡éã«ã¯å¤§å°ã®ã¬ãã«ãããããã®ã¬ãã«ã®ãã¨ãâæ¿åº¦âã¨ããã
æãæ¿åº¦ã®å°ããªç¡éã¯ãï¼ï¼ï¼ï¼ï¼ï½¥ï½¥ï½¥ã¨ç¶ãèªç¶æ°ã®ç¡éã§ãâå¯ç®ç¡éâã¨å¼ã°ãã¦ããã
æ°ç´ç·ä¸ã®ç¹ã®æ°ã¯ãâå¯ç®ç¡éâããæ¿åº¦ã®å¤§ããâéå¯ç®ç¡éâã§ããã
æ¿åº¦ã¯ããããã¾ãç¡éã«å¤§ãããªãå¾ãã
æ°ç´ç·ä¸ã®ç¹ã®æ°ããããã«æ¿åº¦ã®å¤§ããç¡éããç¡éã«åå¨ããã
è¨ç®æ©æ¢°ã®æã¡å¾ãã¢ã«ã´ãªãºã ã®å
¨ã¦ã¯å¯ç®ç¡éãªã®ã§ãæ¬è³ªçã«éå¯ç®ç¡éã«å±ããåé¡ãè§£ããã¨ã¯ã§ããªãã
ã©ããªã¢ã«ã´ãªãºã ã以ã¦ãã¦ãããã®ä¸ã®ã»ã¨ãã©ã®åé¡ã¯è§£ããªãã
è¨ãããã£ãã®ã¯ä»¥ä¸ãªã®ã§ã以ä¸ã¯èè¶³ã
ãã£ããã¯ä»¥ä¸ã®ã²ã¨è¨ã«ãã£ãã
ãåå¦ã¯ã©ã°ã©ã³ã¸ã¢ã³ã¨ããï¼åã®éã ãèªããã°å®å¼åã§ããç±åå¦ã¯ã¨ã³ãããã¼ã¨ããï¼åã®éã ãèªããã°å®å¼åã§ããã
>> http://as2.c.u-tokyo.ac.jp/~shmz/zakkifiles/07-08-21.html
å®éããç±åå¦ã®åºç¤ãã¨ããæ¬ã§ã¯ãã¨ã³ãããã¼ããä»ã®å
¨ã¦ãå°ãã¦ããã
温度ã¨ããå½ããåã«æããéã§ããããã¨ã³ãããã¼ããå°ãããã
ãã©ã³ãã¦åå¦ãã¨ããæåãªï¼ãããé«åº¦ãªï¼æç§æ¸ã§ã¯ãã©ã°ã©ã³ã¸ã¢ã³ããä»ã®å
¨ã¦ãå°ãã¦ããã
ç©çå¦ã¨ã¯æãããã»ã©ã¾ã§ã«ä½ç³»ç«ã£ãå¦åã§ãã»ãã®ãããã®åºç¤åçãããä»ã®å
¨ã¦ãå°åºãããã
âæè¨âã¯æ¥µéã¾ã§å°ãªãã¦ããã¨ã¯âèããã°åããâã®ã ã
ã§ã¯ãç©çå¦ã«æä½éå¿
è¦ãªâæè¨âã¯ã©ãã ãããã®ãï¼
ããæã£ã¦å¿
è¦æä½éã®âæè¨âé¨åãç§ãªãã«ãªã¹ãã¢ããããã®ããä¸ã®ï¼ï¼ è¶
訳ã»ç©çå¦ ï¼ï¼ã¨ãªã£ãã
æä½éãããã ãé ã«ãããè¾¼ãã§ããã°ããã¨ã¯âèããã°åããâã¯ããªã®ã§ããã
âæè¨âãå°ãªãåãããã¨èããªãã¨ãããªãã®ã ããããã§ãèãç¶ããã°ããã¤ãã¯å¿
ãåããã
å¿
ãåããããã«ã§ãã¦ããã
ãã®ããã«èããã¨ãæå¤§ã®è¬ã¯
ãããã®ä¸çããèããã°åããããã«ã§ãã¦ããã®ã¯ä½æ
ãï¼ã
ã¨ãããã¨ã«ãªãã
ãã®è¬ã¯ ï¼ï¼ç©çå¦ï¼ï¼ ã®ãªã¹ãã«ã¯ï¼ä»ã®ã¨ããï¼å
¥ããªãããèãç¶ããã°å¿
ãåãããã¨ããä¿è¨¼ãç¡ãã
è¬ã§ããã

- ä½è :æ¸ æ°´ æ
- çºå£²æ¥: 2007/03/01
- ã¡ãã£ã¢: åè¡æ¬
ãªã転売ã¤ã¼ã¯æªãªã®ã
転売ã¤ã¼ã¯çµæ¸ã®ä»çµã¿ã«åã£ã¦ãéè¦ã®ããæã«ä¾çµ¦ãã¦ããã ãã§ã¯ãªããã
ããããªãæªãã®ãï¼
ãã£ãã転売ãè¡ããã°ãããè¬ç½ªãã¦ããè°å¡ãããããã ãããªãè¬ãã®ãçè§£ã«è¦ããã
ãããæ£ã å ã ã¨ãâæ©è»¢ã®å©ãç§ã¯ãã®ãããªæ¹æ³ã§çµæ¸æ´»åãè¡ãã¾ããâã¨ä¸»å¼µãã¹ãã§ã¯ãªããã
ã»ã»ã»ã¨ããæè¦ããã¨ããè¥ã人ããææããã¦ãç§ã¯å³åº§ã«æ°ã®å©ããè¿çãã§ããªãã£ãã
ä¸ä¸¡æ¥èãã¦ããã£ã¨ããã ããã¨æãè³ã£ãçã以ä¸ã«è¨ãã
[ï¼]ï¼è»¢å£²ã¤ã¼ã¯ã決ãã¦ããèªä½ãâæªâãªã®ã§ã¯ãªãã
[ï¼]ï¼ãã ã転売ã¤ã¼ãâæªâã«ããæ¹ãé½åã®è¯ã人ãã¡ã¯ãã転売ã¤ã¼ï¼æªãã§ããã¨ä¸»å¼µããã
ããã®ããã«ä¸»å¼µãããã¨ãã¾ããæªã§ã¯ãªãã
[ï¼]ï¼ããã¦ãã転売ã¤ã¼ï¼æªãã ã¨èãã人ãã¡ã夿°æ´¾ã§ãããªãã°ã転売ã¤ã¼èªèº«ã¯å å¿âèªåã¯æªããªãâã¨æã£ã¦ããã¨ãã¦ããå ¬è¡ã®é¢åã§è¬ãã¨ããé¸æãæ¡ç¨ããã
ãæ ã«ã転売ã¤ã¼ã¯ã³ã½ã³ã½è¡åããããã®é¸æãã¾ããæªã§ã¯ãªãã
[ï¼]ï¼çµå±ãã©ãã«ãâæªâã¯ç¡ããããã®ã¯åçç鏿ã ãã ã£ãã®ã§ããã
[ï¼]ï¼è»¢å£²ã¤ã¼ã¨ãã転売ã¤ã¼ï¼æªãã ã¨èãã人ãã¡ã®ãã©ã¡ãã主æµã¨ãªãã夿°æ±ºã®ä¸ã§ã®æ£ç¾©ãå ããã®ãï¼
ããã®é¸æã¯æçµçã«ã転売ã¤ã¼ãå©ç¨ããããæå¦ãããã¨ãããæ¶è²»è ã®è¡åã«ããã£ã¦ããã
ããããèªç±è³æ¬ä¸»ç¾©ç¤¾ä¼ã®æææ±ºå®æ¹æ³ã¨ãããã®ã§ããã
話ãè¤éã«ããã®ã§ã䏿£è»¢å£²ç¦æ¢æ³ããæ¡ä¾ã§ç¦æ¢ããã¦ããå ´åã®ãã¨ã¯ãã²ã¨ã¾ãèã«ç½®ãã¦ãããã
ããã§åé¡ã«ãããã®ã¯ãä»®ã«æ³å¾ãæ¡ä¾ã許ããã¨ãããã転売ã¨ããè¡çºããèªä½ãâæªâãªã®ãã©ããã§ããã
[ï¼]ï¼è»¢å£²ã¤ã¼ã¯ãããèªä½ãâæªâãªã®ã§ã¯ãªãã
確ãã«ä»¶ã®è¥ã人ãè¨ãããã«ãéè¦ããã¨ããã«ã驿£ãªä¾¡æ ¼ã§ä¾çµ¦ããã®ãçµæ¸ã¨ãããã®ã§ããã
ãããï¼ï¼ä¸ååºãã¦ããã¹ã¯ãè²·ãããï¼ã¨ãã人ãå±
ããªããï¼ï¼ä¸åã§å£²ãã®ãèªç±å¸å ´ã ã
ããã«ãä½ãâæªâã¯ç¡ãã
[ï¼]ï¼è»¢å£²ã¤ã¼ãâæªâã«ããæ¹ãé½åã®è¯ã人ãã¡ã¯ãã転売ã¤ã¼ï¼æªãã§ããã¨ä¸»å¼µããã
ãªãã°èªç±å¸å ´ã«ä»»ãã¦ãçã䏿ã«ä¾¡æ ¼ãåãä¸ããã°è¯ãã§ã¯ãªãããã¨æããããããªãããç¾ã«ãããªã£ã¦ã¯ããªãã
ããã¯ã©ããããã¨ãã
ããã§ãèªåãããã¹ã¯ã売ãã·ã§ããã®åºé·ãã«ãªã£ãã¤ããã§èãã¦ã¿ããã
åºé·ã¯ãã§ãããã¨ãªãä¾¡æ ¼ãåãä¸ããããå½ç¶ãåãä¸ããæ¹ãå²ããã
ããã§ã大åã®ã·ã§ããã¯ãä¾¡æ ¼ã®åãä¸ããå®éã«ã¯è¡ããªãã£ãã
ãªãã ãããã
ãã¡ããããããªãã¨ãããã°å³åº§ã«é¡§å®¢ã®ä¿¡ç¨ã失ãããã§ããã
ãã¨ã仿¥ããã¹ã¯ãï¼ï¼ä¸åã§å£²ããã¨ãã¦ãããã¹ã¯ã®åä¸è¶³ã¯ãããè§£æ¶ããã ããã
ãã®ã¨ãã«ãªã£ã¦ã顧客ã¯ãã£ã¨ããè¨ãã«éããªãã
ããã®ã·ã§ããã¯åèã ã£ãã¨ããç§ãã¡ã®è¶³å
ãè¦ã¦ãã¨ãã§ããªãä¾¡æ ¼ã§ãã¹ã¯ã売ãã¤ããã
ããã®ã¨ãã¯ä»æ¹ãªãè²·ã£ããã©ãä»å¾ããã®ã·ã§ããã§è²·ããã¨ã¯æ¢ããããã
ããããé¡§å®¢ã®æ°æã¡ã容æã«æ³åã§ããã®ã§ãã·ã§ããã®åºé·ã¨ãã¦ã¯ã次ã®ï¼æãè¿«ããããã¨ã«ãªãã
ã(1): 仿¥ã®ï¼ï¼ä¸åãæ¡ããã
ã(2): ææ¥ã®é¡§å®¢ãæ¡ããã
ããç§ãã·ã§ããã®åºé·ã§ãã£ããªããææ¥ã®é¡§å®¢ã®æ¹ãé¸ã¶ã
ããã§ãåºé·ãæ
ã«ããµãã人徳è
ã ã£ãããè¨ç®é«ãåå©ä¸»ç¾©è
ã§ãã£ããã¯ãçµæã«ä½ãå½±é¿ãä¸ããªãã
ï¼ããããã·ã§ããã®é°å²æ°ã«ã¯å½±é¿ãä¸ããã¨æãããä»ã®è°è«ã«ã¯é¢ä¿ãªããï¼
ã¨ã«ããâææ¥ã®é¡§å®¢âãé¸ãã ã¨ãããçµæã ããéè¦ãªã®ã§ããã
éã«è¨ãã°ãææ¥ã®é¡§å®¢ããã仿¥ã®ï¼ï¼ä¸åãé¸ãã 人ãã¡ãâ転売ã¤ã¼âãªã®ã§ããã
å®éãç§ã¯ã¨ããã·ã§ããã®åºé·ã転売ãè¡ãªããªãã£ãçµç·¯ãèãããã¨ãããã
ãã®åºé·ã¯ããã¾ãã¾ãã¹ã¯ãæã«å
¥ã£ãã®ã§ããµã¨âãã¹ã¯ä»ãååâã®è²©å£²ãé ãããã£ãã®ã ããã ã
ããããå®éã«âãã¹ã¯ä»ãååâã®è²©å£²ã¯è¡ããªãã£ãã
ãããªãã¨ããããã顧客ã®ä¿¡ç¨ã失ãã¨èããããã§ããã
ããã§å·éã«ãããã¾ã§ãåå©çã«èãããªãã仿¥ã®ã·ã§ãããä¾¡æ ¼ãåãä¸ããªãã£ãããã¨ãã£ã¦ãææ¥ã®ã·ã§ãããä¾ç¶ã¨ãã¦æ¶è²»è
ã®å³æ¹ã§ãããã¨ããä¿è¨¼ã¯ã©ãã«ãç¡ãã
ã¾ããä¾¡æ ¼ãåãä¸ããªãã£ãããã¨ãã£ã¦ã顧客ãåãã§ã·ã§ããã®ãã¡ã³ã«ãªããã¨ããä¿è¨¼ãç¡ãã
ã·ã§ããã¨é¡§å®¢ã®éã§ãä½ãç¹å¥ãªå¥ç´ãåã交ãããããã§ã¯ãªãã®ã§ããã
ãä¾¡æ ¼ãåãä¸ããªãã£ã â ã·ã§ããã¨é¡§å®¢ã®ç¸äºå©çãã¨ããå³å¼ã«ã¯ãä½ï¼ã¤ç¢ºããªæ ¹æ ãç¡ãã
ãªã®ã§ãããããéåçãªé¸æãã ã¨è¨ã人ãããããç§ã¯ããã¯æããªãã
ãªããªããã·ã§ããã¯å®éã«é¡§å®¢ãè²·ãã»è²·ããªãã®è¡åçµæã示ãâåã«âãææã¡ã®æ
å ±ã ãã§å¤æãä¸ããªããã°ãªããªãããã§ããã
ã·ã§ããã«ãã¦ã¿ãã°ãä½ããã®ç¢ºå®ãªæ ¹æ ã«åºã¥ãã¦âæ¬å½ã«â顧客ã®ä¿¡ç¨ãå¾ãããããåé¡ãªã®ã§ã¯ãªãã
顧客ã®ä¿¡ç¨ãâè½ã¨ããããããªãâã¨ãã鏿è¢ããåºé·ã®é ã«æµ®ãã¶ãã©ããã ããåé¡ãªã®ã§ããã
顧客é¢ãã®âæããããâã¨ããã ãã§ãå¤ãã®åºé·ã«ã¨ã£ã¦âææ¥ã®é¡§å®¢âãåççãªé¸æã¨ãªãã
ãã®åºé·ã®å¿çã¯éè¦ãªãã¤ã³ãã ã¨æãã®ã§ãããå°ãæãä¸ãã¦ã¿ããã
ãã¹ã¯ã«é¢ãã¦è¨ãã°ãç§ã¯å
å¿ããã¹ã¯ã¯ç´æ¥ã«ã¯ã¦ã£ã«ã¹ã«å¯¾ãã¦å¹æãç¡ããã¨æã£ã¦ããã
ã¨ããã®ããã³ããã¦ã¤ã«ã¹ã®å¤§ããã¯ããã100nmç¨åº¦ããã¹ã¯ã®ç®ã®å¤§ããã¯æ°Î¼mã¬ãã«ãªã®ã§ããã¹ã¯ã«ãã£ã¦ã¦ã£ã«ã¹ã濾ãåãã®ã¯ç¡çãªè©±ã ããã ã
ããã§ããç§ã¯å¤åºããã¨ãï¼æ¬å¿ã«åãã¦ï¼ããã¹ã¯ãä»ãããã¨ãã鏿ãè¡ã£ã¦ããã
ãªããã¨ããã¨ãå¨å²ã®äººããããã®äººã¯ãã¹ã¯ãçãã¦ããªããé
æ
®ã«æ¬ ãã人ã ãã¨è¦ãããããªãããã§ããã
ããã§ãæ¬å½ã«å¨å²ã®äººãããæããã©ããã¯åé¡ã§ã¯ãªãã
ã¾ãããã¹ã¯ãæ¬å½ã«å¹æããããã©ãããåé¡ã§ã¯ãªãã
ç§ã®é ã«ãå¨å²ã®äººã«ççã®ç®ãåãããããããããªããã¨ãã鏿è¢ãæµ®ãã¶ãã¨ãåé¡ãªã®ã ã
æãæµ®ãã¹ãã ãã§ãç§ã¯ããã¹ã¯ãä»ãããã¨ãã鏿è¢ãé¸ã°ãããå¾ãªãã®ã§ããã
å¤ãã®åºé·ãâææ¥ã®é¡§å®¢âãé¸ã¶ã®ããå¿ççã«ã¯ç§ã®ãã¹ã¯çç¨ã®é¸æã«ä¼¼ã¦ããã
ãæ¬å½ã«é¡§å®¢ãã©ãæããããåé¡ãªã®ã§ã¯ãªããããã£ã¨é¡§å®¢ã¯ããèããã ãããã¨åºé·ãæãæµ®ãã¹ããã¨ãåé¡ãªã®ã ã
ãã¦ããããã¦å¤ãã®åºé·ãâææ¥ã®é¡§å®¢âã鏿ããå¾ã転売ã¤ã¼ã®åå¨ãã©ãèããã ãããã
æããã«ã転売ã¤ã¼ã¯ã·ã§ããã«ã¨ã£ã¦ã®ç«¶åç¸æã§ããã
ã·ã§ããã«ã¨ã£ã¦ã顧客ãä»ãã転売ã¤ã¼ããï¼ï¼ä¸åã®ãã¹ã¯ãè³¼å
¥ããããã
å°ãã®éææ
¢ãã¦ããã£ã¦ãå°æ¥âä¿¡é ¼ã®ãããâã·ã§ããã§è²·ã£ã¦ããã£ãæ¹ããã£ã¨è¯ãã
ãã®ãããã·ã§ããã¯ã転売ã¤ã¼ã¯ãæ¶è²»è
ã®è¶³å
ãè¦ããä¿¡é ¼ã®ãããªãâæªâã§ãããã¨ä¸»å¼µãããã¨ã«ãªãã
ã¤ã¾ããã·ã§ããã¯ã転売ã¤ã¼ãâæªâã«ããæ¹ãé½åã®è¯ã人ãã¡ããªã®ã ã
[ï¼]ï¼è»¢å£²ã¤ã¼ã¯å å¿âèªåã¯æªããªãâã¨æã£ã¦ããã¨ãã¦ããå ¬è¡ã®é¢åã§è¬ãã¨ããé¸æãæ¡ç¨ããã
ã§ã¯ãä»åº¦ã¯è»¢å£²ã¤ã¼ã®ç«å ´ã«ç«ã£ã¦èãã¦ã¿ããã
ããããªãã転売ã¤ã¼ã ã£ãã¨ãã¦ãããããªã¼ã¯ã·ã§ã³ã§é«é¡ã®ãã¹ã¯ã売ããã°ãã¦ããã¨ããã
ãããã²ãããªãã¨ã§ãããªãã®å人ã»ç¥äººã«ç¥ãããã¨ãããã
ãã®ã¨ããããªãã¯æ¬¡ã®ï¼æãè¿«ããããã¨ã«ãªãã
ã(1): ä¸ã«æ¸ãããããªèª¬æãè¡ã£ãå¾ãèªåã®ç¡ç½ªã主張ããã
ã(2): è¨ã訳ããããç´ ç´ã«è¬ãã
ã©ãã ãããã
ç§ãªãâç´ ç´ã«è¬ãâæ¹ã鏿ããã
ãªããã¨ããã¨ã(1)ã®èª¬æãç¸æãåãå
¥ãã¦ãããªããç´å¾ããªãæããå¤åã«ããããã ã
ããã§ãã(1)ã®èª¬æãæ¬å½ã«æ£ãããã©ããã¯åé¡ã§ã¯ãªãã
ã¾ããå®éã«èª¬æããâå¾ã§âãç¸æãç´å¾ããããããªãããåé¡ã§ã¯ãªãã
"ç¸æãç´å¾ããªããããããªã"ã¨ããæãã転売ã¤ã¼ã®è³è£ã«æµ®ããã ã ãã§ãå¤ãã®è»¢å£²ã¤ã¼ã¯âç´ ç´ã«è¬ãâæ¹ã鏿ããããå¾ãªãã®ã ã
説æãè¡ãâåã«âã転売ã¤ã¼ã¯ææã¡ã®æ
å ±ã ãã§å¤æãä¸ããªããã°ãªããªãã
ãã®âæ
å ±ã®é対称æ§âã«ã¤ãã¦ã¯ãã·ã§ããã®åºé·ãã転売ã¤ã¼ããåæ§ã®ç¶æ³ã«ç½®ããã¦ããã®ã§ããã
ãã®è»¢å£²ã¤ã¼ã®é¸æã«ã¤ãã¦ã¯ãèªåãçè°ä¼è°å¡ã¨ãã£ããããªç«å ´ã«ãã£ãã¨æ³åããã°ãããåãããããã
ããèªåãè°å¡ã ã£ããªããå¤ãã®ææ¨©è
㯠(1), (2) ã®é¸æã®ã©ã¡ããåãå
¥ããã ãããï¼
ãããã¯ããå¤ãã®ææ¨©è
ã«åãå
¥ãã¦ããããã ãããã¨è°å¡ãèãã鏿è¢ã¯ãã©ã¡ãã ãããã
æ©ãã¾ã§ããªãã(2)ã®è¬ç½ªã§ããã
ãã¨ãå
å¿ããæ¬å½ã¯ç§ã¯æªããã¨ãªã©ãã¦ããªããã¨èãã¦ããã¨ãã¦ãã§ããã
ããæ¬æã«åããè¨åãâæªâã ã¨ããã®ãªãã以ä¸ã¯å ¨ã¦âæªâã¨ãããã¨ã«ãªãã
ã»æ¬å½ã¯ãã¹ã¯ãªã©å¹æãç¡ãã¨æã£ã¦ããã®ã ããæã«åãã¦ä»ãããã鏿è¢ãç¡ããç§ã®å¤åºè¡åã
ã»æ¬å½ã¯å¤ã§æ¼ãããããªãªã¯ã«ã¼ãã¹ã¼ããªã©çããããªãã®ã ããæã«åãã¦çããã鏿è¢ãç¡ãã就活ã«è¨ãè¥è ãã¡ã
ã»æ¬å½ã¯åããããªãã®ã ããæã«åãã¦åããã鏿è¢ãç¡ãããµã©ãªã¼ãã³ã
ã»æ¬å½ã¯ä»²è¯ããããã®ã ããæã«åãã¦å æ ãããã鏿è¢ãç¡ããã¯ã©ã¹ã®ãããã
â» ä»ã«ã便ãä½ã£ã¦ã¿ããããæ¬å½ã¯ããã ããæã«åãã¦ãããã鏿è¢ãç¡ãããããã
以ä¸ã®äºæ
ãããããã転売ã¤ã¼ã¯é ãã¦ã³ã½ã³ã½è¡åãããã¨ã«ãªãã
[ï¼]ï¼ã©ãã«ãâæªâã¯ç¡ããããã®ã¯åçç鏿ã ãã ã£ãã
以ä¸ããããèªåãââã ã£ãããã¨æ³åããã°ãå½ç¶ã®å¸°çµã§ãã£ãã¨åããã
ã©ãã«ãâæªâã¯ç¡ãã£ãã®ã ã
[ï¼]ï¼ãã®é¸æã¯æçµçã«ã転売ã¤ã¼ãå©ç¨ããããæå¦ãããã¨ãããæ¶è²»è ã®è¡åã«ããã£ã¦ããã
ã§ã¯ãããªãããç§ãããããã¯ç¤¾ä¼ãã転売ã¤ã¼ãâæªâã¨è¦ãªãããããã§ããªãã®ãã
ãã®å¤æã¯æçµçã«ãæ¶è²»è
ã®è¡åã«ããã£ã¦ããã
ããããªããç§ã®å¤§å¤æ°ã転売ã¤ã¼ãå©ç¨ãããªããããã ã転売ã¤ã¼ã«æ£ç¾©ãä¸ãããã¨ã«ãªãã
ãããã¯è»¢å£²ã¤ã¼ãå©ç¨ãããâè¯å¿çãªâã·ã§ããã ããå©ç¨ãããªããã·ã§ãããæ£ç¾©ã¨ãªãã
çã¯ãç§èªèº«ãããªãèªèº«ã®è¡åã§ç¤ºããã¨ã«ãªãããã ã
[ãã¾ã]ï¼ãã¹ã¯ã¯æä½ãã§ããã
ã§ãç§ã®è¡åãªã®ã ãã転売ã¤ã¼ãããã·ã§ãããããè³¼å
¥ãããæä½ãã§ãã®ããã¨ã«ããã
æã¬ããã¨ã´ã ç´ã§ãã¹ã¯ãã§ããã

ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸è§£é
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã¨ã¯ãè§£æåå¦ãåãã¨ããç©çå¦ã®åºç¤ãæãæ¹ç¨å¼ã§ãã
ãâL( q(t), q'(t), t )/âq(t) - d/dt{âL( q(t), q'(t), t ) /âq'(t) } = 0
ãããã-- wikipedia:ãªã¤ã©ã¼ï¼ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼
ã¡ããã©é¢æ°ã®æå°å¤ãæ±ãããã¨ããå¾®åï¼ï¼ãã調ã¹ãã®ã¨åãããã«ã
æ±é¢æ°ï¼é¢æ°ã®é¢æ°ï¼ã®æå°å¤ãæ±ãããã¨ãããã®ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã調ã¹ã¾ãã
ãã ããå¾®åï¼ï¼ãã«ã¯âè°·åºã®å¾ãã¯å¹³ãã«ãªãâã¨ããæç¢ºãªã¤ã¡ã¼ã¸ãæããã®ã«æ¯ã¹ã¦ã
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸ãæãæãã®ã¯ããªãé£ããã
æ°å¦ãç¸å½å¾æãªäººã§ãã£ã¦ããè¨å·ã®åé¢ã追ãã®ãç²¾ä¸æ¯ãã¨ããã®ã宿
ã§ãããã
ã©ã°ã©ã³ã¸ã¥ã®ãè§£æåå¦ãã¨ããæ¬ã«ã¯ãã¤ã¡ã¼ã¸ãå©ããå³ãä¸åããã¾ããã
ãç·è¨ãã§ã©ã°ã©ã³ã¸ã¥èªèº«ãè¿°ã¹ã¦ããããã«ï¼ãã®æ¬ã«ã¯ãå³ãã¾ã£ããè¦åºããããï¼å¿ è¦ã¨ãããã®ã¯ã代æ°çãªæä½ã®ã¿ãã§ããï¼
ã-- <翻訳> Jã»Lã»ã©ã°ã©ã³ã¸ã¥ãè§£æåå¦ã(æ)
ã-- https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/137415/1/phs_5_127.pdf
ããããè§£æåå¦ã¨ã¯ã
ã代æ°çãªæä½ãããæ£å½ã§ãããå¹¾ä½å¦çãªå³ã¯æ¬æ¥æé¤ãããã¹ãè£å©ææ®µã«éããªãã
ã¨ããææ³ã®ç£ç©ã ã£ãã®ã§ãã
ãã®ææ³ã¯ç¾ä»£ã§ããªãæå¹ã§ãé«åº¦æ½è±¡çãªå¯¾è±¡ãåã«ãã¦ãç§ãã¡ã¯
ãã¤ã¡ã¼ã¸åãã¹ãããªè«¦ãããã
ãéªéã§ãã£ã¦ãå³ãæãæããã
ã®ï¼æãè¿«ããã¦ããããã§ãã
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ãé£ããã¨æããæ¬å½ã®çç±ãããã«ãã£ã¦ã
æåããã¤ã¡ã¼ã¸åã諦ãã¦ããã£ãæ¹ããããåã容ãããããã¨ããå´é¢ãããã¾ãã
ã«ãããããããããã§ã¯ããã¦éªéãªã¤ã¡ã¼ã¸åã®æ¹æ³ã試ã¿ã¾ãã
ã©ã°ã©ã³ã¸ã¥ããã«ã¯ç³ã訳ãªãã®ã§ãããç§ãã¡å¡äººã¯ã¤ã¡ã¼ã¸åãã¦åãã¦è
ã«è½ã¡ãã¨æããããã§ãã
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®éª¨æ ¼ãèªã¿è§£ãããããã£ããâå¾®åâã¨ããè¦ç´ ãæ£ä¸ããã
ã¾ãâ颿°ã®é¢æ°âã¨ããè¦ç´ ã ãã«çç®ãã¾ãããã
ãã¾ã
ãã L(t) = t^2 - 2 t
ã¨ãããt ã®é¢æ°ããã£ãã¨ãã¾ãããã
ããã§ L ã®æå°å¤ãæ±ããã¨åãããã°ã颿° L(t) ã t ã§å¾®åããã®ãå¸¸å¥ææ®µãªã®ã§ããã
ããã§ã¯ããã¦æ¬¡ã®ãããªè¦æ¹ãã¨ãã¾ãã
ãã T(t) = t^2
ãã U(t) = 2 t
ã¨ç½®ãã¦ã
ãã L( T(t), U(t) ) = T(t) - U(t)
ã¨ããâT 㨠U ã®é¢æ°Lâãä½ãã¾ãã
ãã®ã¨ã L ã®æå°å¤ãæ±ããã«ã¯ã
T 㨠U ãã¡ããã©ãã©ã³ã¹ãã¨ã£ã¦çãããªãç¹ãT' = U' ãæ¢ãã°ããã
ã¨ãããã¨ã«ãªãã§ãããã
ããT'(t) = 2 t
ããL'(t) = 2
ããã2 t = 2 ãè§£ãã¦ãt = 1 ã®ã¨ã L ã¯æå°ã¨ãªãã

ãããªæéãããã¦ä½ãå¬ããã®ãã¨ããã¨ãæå°å¤ã«ã¤ãã¦ã®ã¤ã¡ã¼ã¸ãå¤ããã¾ãã
颿° L(t) ãç´æ¥ t ã§å¾®åããã¨ããæå°å¤ã¨ã¯âå¾ããï¼ã¨ãªãç¹ãæ¢ãâã¨ãããã¨ã§ããã
䏿¹ãL(T,U) = T - U ã鿥çã« t ã§å¾®åããã¨ããæå°å¤ã¨ã¯âT' 㨠U'ããã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåã£ãã¨ãâã¨ããæå³ã«å¤ããã¾ãã
âå¾ããï¼ã¨ãªãç¹âã¨ããè¦æ¹ããããªããæå°å¤ã¯âç¹âã¨ãã¦å¾ããã¾ããã
䏿¹ãâãã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåãâã¨ããè¦æ¹ããããªãã
T'=U' ãæºããç¹ãåæãããã¨ã§ãæå°å¤ãâç·âã¨ãã¦å¾ãéãæãã¾ãã

ããã«å¤åæ³ ï½ æå°ã¨ãªã颿°ãæ±ããæ¹æ³ ï½ ã®ã«ã©ã¯ãªãããã¾ãã
è§£æåå¦ã«ãããããã©ã³ãã¼ã«ã®åçãããçµå±ã¯ãã®âãã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåãâãã¨ãæå³ãã¦ãã¾ãã
éåããç©ä½ã¯ã屿屿ã«ããã¦ãéçãªåã¨ãåçãªå éï¼ã«ç±æ¥ããåï¼ãæã¡æ¶ãåã£ã¦ããã
ãªã®ã§ããããããã©ã³ã¹ãä¿ã¤ç¹ãç·ã§çµã¹ã°ãéåã®è»è·¡ãèªãã¨æµ®ãã³ä¸ããã ããã
ããããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ãå½¢ä½ãã¢ã¤ãã¢ã ã£ãã®ã§ãã
âãã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåãâãã¨ãçµæ¸ã«ä¾ãããªããéè¦ã¨ä¾çµ¦ã®åè¡¡ç¹ã®ãããªãã®ã§ãã

ãã-- wikipedia:éè¦ã¨ä¾çµ¦ ããå¼ç¨
ã©ã°ã©ã³ã¸ã¢ã³ã¨ã¯ãä½è¨ãªã¨ãã«ã®ã¼ã³ã¹ãã¨ããæå³ã§ãçµæ¸ã§è¨ãã¨ããã®ã³ã¹ãã¨é«ãè¦ªåæ§ãããã¾ãã
ä»®ã«ãé給ã®ãã©ã³ã¹ãã¨ããå§¿ãå®ç¾ãã¹ã社ä¼ã§ãããã¨èãããªãã
é給ãã©ã³ã¹ãåçååã¨ãã¦ã社ä¼ã®å§¿ãäºè¨ï¼è¨ç®ï¼ã§ãããã¨ã«ãªãã§ãããã
ãã¨ãã°åæä¾¡æ ¼ã横軸ã«ã¨ã£ã¦ãåè¡¡ç¹ãç·ã§çµã¹ã°ãåæä¾¡æ ¼ã«å¯¾ãã驿£ãªçç£éã®ã°ã©ããæãã¾ãã
ãããã¯ãããæ¶è²»è
ã®æºè¶³åº¦ã®ãããªãã®ãæ°å¤åã§ããã°ã
æºè¶³åº¦ã横軸ã«ã¨ã£ã¦åè¡¡ç¹ãç·ã§çµã¹ã°ã驿£ä¾¡æ ¼ã®ã°ã©ããä½ããã¯ãã§ãã
â» ç§ã¯çµæ¸å¦ã«ã¯çãã®ã§ãããã©ããæ¨ä»ã®çµæ¸å¦ï¼ã®ä¸æ´¾ï¼ã¯ãããããäºããã£ã¦ããã¿ããã§ãã
â» ã大å¦äºåçã®ã¨ãã«ãè§£æåå¦ãã®è¬ç¾©ã§ç¿ã£ãã©ã°ã©ã³ã¸ã¥ã®æ¹ç¨å¼ãããªãããã¯ãçµæ¸å¦ã®æç§æ¸ã«ãã®ã¾ã¾æ¸ããã¦ããã®ã§ãããã
â» * ç¾å®ã¨éã£ã¦ãæ°å¦ã¢ãã«ãä¿¡ä»°ãã¦ãã¾ãçµæ¸å¦è
ãã¡ >> http://data11.web.fc2.com/jiyuuboueki5.html
é給ãã©ã³ã¹ã®ä¾ã§è¨ãã¨ããªãªã¸ãã«ã®ã°ã©ãã¯æ¨ªè»¸ããæ°éãã¨ãªã£ã¦ãã¾ãã
ãã®ï¼æã®ã°ã©ãããå¾ãããçã¯ãåè¡¡ç¹ãã¨ãããã ï¼ç¹ã®ã¿ã§ããã
ããã ãã§çµãã£ã¦ãããªããé給ãã©ã³ã¹ã®ã¢ã¤ãã¢ã¯ããã¾ã§ããããããããªãã£ããã¨ã§ãããã
é給ãã©ã³ã¹ãæç¨ãªã®ã¯ããªãªã¸ãã«ã®ã°ã©ãã®ä¸ã«ããã«ããï¼æ¬¡å
ãåæä¾¡æ ¼ã¨ããæºè¶³åº¦ã¨ããã£ããæ°ããªå¤æ°ã追å ã§ããã¨ããã«ããã¾ãã
ãªãªã¸ãã«ã®åè¡¡âç¹âã¯ãæ°ããªå¤æ° ï½ åæä¾¡æ ¼ã«å¯¾ããâç·âããããã¯æºè¶³åº¦ã«å¯¾ããâç·âã¨ãªãã¾ãã
ãã¦ãã ãã¶æã£ã¦åããè¨ãæ¹ã¨ãªãã¾ããããå
ã»ã©ã®åç´ãªä¾ã
ãã L(T,U) = T(t) - U(t) = t^2 - 2 t
ã«ç«ã¡è¿ãã¨ãããã«ãã£ãã®ã¯å¤æ° t ã®ã¿ã§ããã®ã¾ã¾ã§çµãã£ã¦ãã¦ã¯ä½ã®ããããã¿ãæãããã¾ããã
夿° t ã®ä¸ã«ãæ°ããªå¤æ°ãä½ç½® q ã¨ãé度 q' ããªã¼ãã¼ã©ããããã¦åãã¦ã
ãã»ä½ç½® q ã«å¯¾ããåè¡¡ã®ç·
ãã»é度 q' ã«å¯¾ããåè¡¡ã®ç·
ãæããããã§ãã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ç価ãçºæ®ãããã®ã§ãã
â» è§£æåå¦ã§ã¯ãç©ä½ã®ä½ç½®ã x ã¨æ¸ããã« q ã¨æ¸ããã¨ãå¤ãã§ãã
â» x ãããããç´äº¤åº§æ¨ã表ãã®ã«å¯¾ããq ã¯åºãä¸è¬çãªåº§æ¨ã¨ããæ°æã¡ãè¾¼ãããã¦ãã¾ãã
æ¹ãã¦ãå
ã»ã©çãã¦ããâå¾®åâã®è¦ç´ ã«ç®ãåãã¾ãããã
ã©ã°ã©ã³ã¸ã¢ã³ï¼¬ããæ¬æ¥ã®å§¿ã
ãã L( q(t), q'(t) )
ã«æ»ãã¾ãã
ã¤ã¾ãã©ã°ã©ã³ã¸ã¢ã³ L ã¨ã¯ãä½ç½® q ã¨ãé度 q' ã®é¢æ°ã§ãã
â» æ¬æ¥ã§ããã°ãããã«æå» t ãå«ããã¹ããªã®ã§ãããç°¡åã®ããçç¥ãã¾ãã
åé ã«æ²ããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®éª¨æ ¼ã®ã¿ãæãåºãã¨ããããªãã¾ãã
ãâL/âq = d/dt{ âL/âq' }
ã©ã°ã©ã³ã¸ã¢ã³ L ããã¨ãã«ã®ã¼ã³ã¹ããã¨èªã¿æ¿ããã¨ããã®å¼ã¯ã
ãã¨ãã«ã®ã¼ã³ã¹ã L ã«å¯¾ãããä½ç½® q ã®å¯ä¸ã¨ãé度 q' ã®å¯ä¸ãåè¡¡ãã¦ãããã¨èªããã¨ãã§ãã¾ãã
ãããã¯ããéçãªåã¨åçãªåãåè¡¡ãã¦ãããã¨èªããã¨ãã§ããã§ãããã
ï¼ããã¦ãä½ç½®ã¨é度ãåè¡¡ãã¦ããã¨ããã¨ãã«ã®ã¼ã³ã¹ãã¯å±æçã«æå°ã¨ãªããã¨ããã®ããã®å¼ã®ä½¿ãæ¹ã§ããï¼
ãã ãå¼ãè¦ãã¨ãé度 q' ã®ããå³è¾ºã«ã¯ d/dt ã¨ããæä½ãæ½ããã¦ãã¾ãã
ãã® d/dt ããã©ãè§£éãã¹ãã§ããããã
æãéªéã«ãã¦ç°¡åãªè§£éã¯âç´åâã§ãã
é度 q' ã¨ããè¨å·ããã©ã¤ããããæµã®æ¸ãæ¹ dq/dt ã«ç´ãã¦ã¿ã¾ãããã
ï¼ã©ã¡ãã®æ¸ãæ¹ã§ããt ã§å¾®åãããã¨ããæå³ã¯åãã§ããï¼
ããã¦ãd/dt ã¨ããè¨å·ã¯âç´åâã§ãããã¨ãããªãã

ãã®ããã«ãã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã¨ã¯ï¼å°ãªãã¨ãå¼·å¼ãªåé¢ã®ä¸ã§ã¯ï¼æ¥µãã¦ã¢ã¿ãªãã¨ã®ãã¨ã主張ãã¦ããã®ã§ãã
âç´åâããããå°ãã¾ã£ã¨ããªè§£éã¯ããå使éå½ãããã¨ããæä½ã®å¿
ç¶æ§ã§ãã
d/dt ã«ã¯ãå使éå½ãããã¨ããæå³ãããã¾ãã
ä»®ã«ãæéããã£ããæµãã¦ããã¹ãã¼ã¢ã¼ã·ã§ã³ã®ä¸çããã£ãã¨ãã¾ãããã
ã¹ãã¼ã¢ã¼ã·ã§ã³ã®ä¸çã§ã¯ãæéã¯ãã£ããã«ãªãã¾ãããéåã®è»è·¡ã¯åãå½¢ã®ã¾ã¾ã§ãã
æéããã£ããã«ãªã£ã¦ããä½ç½® q ã®å¯ä¸ï¼ä½ç½® q ã«ä¾åããéçãªåï¼ã¯å¤ããã¾ããã
䏿¹ãæéããã£ããã«ãªã£ãã¨ããããé度 q' ã®å¯ä¸ï¼é度 q' ã«ä¾åããåçãªåï¼ã¯å°ãããªãã¯ãã§ãã
ããã§ãè»è·¡ãåãã ã¨ãããã¨ã¯ãé度 q' ã®å¯ä¸ããæéã®æµããéãã«åããã¦èª¿æ´ããªããã°ãªãã¾ããã
ã©ã®ããã«èª¿æ´ãããã¨ããã¨ãæéã®æµããéãã§å²ã£ã¦ãããã¤ã¾ããå使éå½ãããã®éã«æç®ãã¾ãã
ãããé度 q' ã®å¯ä¸ {âL/âq'} ã« d/dt ã¨ããæä½ãæ½ãçç±ã§ãã
ããæéããã£ããæµããä¸çãèªããããªãã®ãªããæéã®åä½ãå¤ãã¦è¨ç®ãããã¨ãèãã¦ã¿ã¦ãã ããã
éåã®è»è·¡ã¯ãç§åä½ã§è¨ç®ãããã¨ããååä½ã§è¨ç®ãããã¨ãä¸è´ããã¯ãã§ãã
ã«ãããããããåã« {âL/âq'} ãè¨ç®ããã¨ãç§éã®æ¹ãåéã® 60åã¨ãªããéçãªå âL/âq ã¨é£ãåããã¨ããªããªã£ã¦ãã¾ãã¾ãã
ï¼éçãªåã®æ¹ã«ã¯ãé½ã«å使éãå
¥ã£ã¦ããªããã¨ã«æ³¨æãï¼
æ¹ç¨å¼ãæç«ããããã«ã¯ï¼ã¤ã¾ãæ¹ç¨å¼ã®ä¸¡è¾ºã®åä½ãåãããã«ã¯ï¼ã{âL/âq'} ãæéã®åä½ã§å²ãå¿
è¦ãããã¾ãã
â» ãã®æéåä½ãæããæä½ d/dt ã¨ãããããé度ã¨ã¯ä½ç½®ã®æéå¤åã§ãã£ã dq/dt ã¨ã¯ã表è¨ã®ä¸ã§ã¯âç´åâã®ããã«æã¡æ¶ãåãã¾ãã
以ä¸ã®ãè³ç«ã¦ãæ´ã£ãã¨ããã§ãã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸åã試ã¿ã¾ãããã

ã¾ãæ¨ªè»¸ã«æå»ï½ã縦軸ã«ç©ä½ã®ä½ç½®ï½ãã¨ããéåã®è»è·¡ãæãã¾ãã
ããã«é«ãã®è»¸ï¼¬ã追è¨ããï¼æ¬¡å
ã®ã°ã©ããå½¢ä½ãã¾ãã
Lã¯ç©ä½ã®ä½ç½®ï½ã«ä¾åããã®ã§ããããï½ÃL平é¢ä¸ã«æãã¾ãã
ï½ÃL平é¢ä¸ã«æãããè»è·¡ã®å¾ãã¯ãâL/âq ãæå³ãã¾ãã
ããã¾ã§ã¯éçãªåã®è©±ã§ãå³ã®ä¸ã§ã¯éè²ã§æããã¦ãã¾ãã
次ã«ãéåã®è»è·¡ãå¾®åããé度ï½âã®ç·ãï½Ãï½å¹³é¢ä¸ã«éãã¦æãã¾ãã
é度ï½âã®è»¸ã¯ãä½ç½®ï½ã®è»¸ã¨ã¹ã±ã¼ã«ï¼åä½ç®çãï¼ãç°ãªã£ã¦ãããããæ¹ãã¦å³ã®å³å´ã«ï½â軸ãä»ãå ãã¾ããã
ã¤ã¾ãå¾®åããï½âã®ç·ã¯ãå³å´ã®ï½âè»¸ã®æ¹ãç¨ããï½Ãï½âå¹³é¢ä¸ã«ãããã®ã¨èãã¾ãã
ï¼å³ã®ä¸ã§ãï½Ãï½å¹³é¢ã¨ï½Ãï½âå¹³é¢ã¯éãã¦æããã¦ãã¾ããï¼
Lã¯ç©ä½ã®é度ï½âã«ãä¾åããã®ã§ããããæãå¹³é¢ãå¿
è¦ã§ãã
å³ã®ä¸ã«ãé度ï½â軸ã«ç´è¡ããå½¢ã§ãé«ã軸 d/dt(L) ãä»ãå ãã¾ãããã
ï¼å³ã®ä¸ã§ãå³ç«¯ã§åç´ã«ç«ã£ã¦ããå¹³é¢ãï½âÃdt/d(L)å¹³é¢ã¨ãªãã¾ããï¼
ãã® ï½âÃdt/d(L)å¹³é¢ä¸ã«æãããè»è·¡ã®å¾ãã¯ãd/dt(âL/âq') ãæå³ãã¾ãã
ããã¾ã§ãåçãªåã®è©±ã§ãå³ã®ä¸ã§ã¯èµ¤è²ã§æããã¦ãã¾ãã
ãããã¦æããï¼æ¬¡å
ã®ã°ã©ãããæ¨ªæ¹åããçºãã¦ã¿ã¾ãããã
横軸ã«ï½ã¨ï½âã®ãªã¼ãã¼ã©ããã縦軸ã«ï¼¬ã¨dt/d(L)ããªã¼ãã¼ã©ããããã
ï¼æã®éã¨èµ¤ã®éãªã£ãã°ã©ããè¦ãããã¨ã«ãªãã¾ãã

éãã°ã©ãã®ä¸ã«ã¯ãLã«å¯¾ããä½ç½® q ã®å¯ä¸ï¼ä½ç½® q ã«ä¾åããéçãªåï¼ãæããã¦ãã¾ãã
赤ãã°ã©ãã®ä¸ã«ã¯ãLã«å¯¾ããé度 q' ã®å¯ä¸ï¼é度 q' ã«ä¾åããåçãªåï¼ãæããã¦ãã¾ãã
ãã®ã¨ããLã屿çã«æå°ã¨ããã®ã¯ãï¼ã¤ã®åã®åè¡¡ç¹ã¨ãªãã¾ãã
éã«ããã®åè¡¡ç¹ãè¨ç®ããªãã辿ã£ã¦ãããã¨ã§ããã¨ã®éåã®è»è·¡ãåç¾ã§ãã¾ãã
ããã¦ãåè¡¡ç¹ã表ãå¼ã¨ã¯ï¼éçãªåï¼ï¼ï¼åçãªåï¼ã¨ããå½¢ãã¨ããè¨å·ã§æ¸ãã°
ãâL/âq = d/dt{ âL/âq' }
ãããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã§ãã
ã* ã¾ã¨ã *
ã»å¾®åã¨ãããã¼ã«ããâå¾ãï¼ï¼âã§ã¯ãªããâï¼ã¤ã®å¢åããã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåã£ãåè¡¡âã§ããã¨æããã
ã»ã©ã°ã©ã³ã¸ã¢ã³ï¼¬ãããã¨ãã«ã®ã¼ã³ã¹ããã¨èªã¿æ¿ããã
ã»ï¼ã¤ã®å¢åãã
ãã(1) ã¨ãã«ã®ã¼ã³ã¹ãLã«å¯¾ããä½ç½® q ã®å¯ä¸ï¼ä½ç½® q ã«ä¾åããéçãªåï¼
ãã(2) ã¨ãã«ã®ã¼ã³ã¹ãLã«å¯¾ããé度 q' ã®å¯ä¸ï¼é度 q' ã«ä¾åããåçãªåï¼
ãã«å¯¾å¿ãããã
ã»(1) 㨠(2) ã¯åãå俵ï¼åº§æ¨ç³»ï¼ã®ä¸ã«ã¯ä¹ããªãã
ããªããªããéçãªåãå使éãå«ã¾ãªãã®ã«å¯¾ããåçãªåã¯å使éãå«ãããã§ããã
ãããã§ãåçãªåã®æ¹ã« d/dt ã¨ããæä½ãå ããåãå俵ã«ä¹ããã
ã»ãããã¦ã§ããåè¡¡ã®å¼ããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã ã
ããâL/âq = d/dt{ âL/âq' }
æå¾ã«ã以ä¸ã®ãããªã¤ã¡ã¼ã¸è§£éã¯åé ã«ãè¿°ã¹ãéããã©ã°ã©ã³ã¸ã¥ããã®ç²¾ç¥ããããã°éªéãªã®ã§ãã£ã¦ã
ããããæç§æ¸æµã®ã代æ°çãªæä½ã®ã¿ãã«ãã証æãæ£éã§ããã¨ããã¦ãã¾ãã
ããããªãã代æ°çæä½ã¯æ£ãããã¤ã¡ã¼ã¸è§£éã¯åãå
¥ããããã®ã§ããããã
天æã©ã°ã©ã³ã¸ã¥ããã¨ã¦äººã®åã§ããããããã誰ãããæç¢ºãªã¤ã¡ã¼ã¸ãæ±ãã¦ããã¯ãã§ãã
ãã®ã¤ã¡ã¼ã¸ãå
¬éããªãã£ãçç±ã®ï¼ã¤ã¯ãé説çã§ããã
ããã¤ã¡ã¼ã¸ã¯æ£ãã人ã«ä¼ãããªãããã
ã§ã¯ãªããã¨æãã®ã§ãã
塿ã§ããç§ãã©ã°ã©ã³ã¸ã¢ã³ã®å³ãæãã¤ã¤æµ®ããã ã®ã¯ã
ãããã®å³ã®æå³ã¯ããªããªã人ã«ã¯ä¼ãããªãã ãããªã»ã»ã»ã
ã¨ããæãã§ããã
å³ã®èªã¿æãæªãã¨ããæå³ã§ã¯ãªãããã®å³ã§ã¯æå³ãæãåãã¦ããªãã表ç¾åãè¶³ããªãã¨ããæå³ã§ãã
ããå°ãå
·ä½çã«è¨ãã¨ãâæéã®æµããæããâã¨ãã£ãæè¦ãå³ã«ãããã¨ãã§ãã¾ããã
ãã¡ãããèªç¶è¨èªã§è¡¨ããã¨ãé£ããã
ã¤ã³ã¿ã¼ã©ã¯ãã£ããªã¢ãã¡ã¼ã·ã§ã³ãdtããã¨ã¼ã³ã¨å¼ãå»¶ã°ãã¨ãããã«ä¼´ã£ã¦ {âL/âq'} ãå¤åãããããªãªãã¸ã§ã¯ããä½ãã°ãããå°ã表ç¾ã§ããããããã¾ããã
ããã§ãå®å
¨ã§ã¯ããã¾ããã
åæãªæ³åã§ããã天æã©ã°ã©ã³ã¸ã¥ããã¯ãèªåã®æã¤ã¤ã¡ã¼ã¸ã彿ã®äººãã¡ã«ã¯ã¾ãä¼ãããªãã¨æã£ãã®ã§ã¯ãªãã§ããããã
ãã®ä¸ã§ãé©ãã¹ãæ¹æ³ ï½ ä»£æ°çæä½ã®ã¿ã«ãã£ã¦è¡¨ç¾ããæ¹æ³ãéæããã®ã ã¨æãã®ã§ãã
ããããã¾ãã«ããããã£ããã®ã ãããå¾ä¸ã®äººããã£ããã代æ°çãªæä½ã®ã¿ãçå®ãã§ããã¨ä¿¡ãè¾¼ãã§ãã¾ã£ãã
確ãã«ã代æ°çãªè¨å·æä½ã¯ã¤ã¡ã¼ã¸ããã誤解ãå°ãªãããã³ãã¼ããã®ãé£ããã¯ããã¾ããã
ãããããã ã³ãã¼ããã ãã§ã©ã°ã©ã³ã¸ã¥ããã®æå³ãä¼ãã£ãã®ãã¨ããã¨ãããã«ã¯ä¾ç¶ã大ããªã®ã£ããããããã®ã¨æãã®ã§ãã
代æ°çæä½ã«ãã説æã¯ã以ä¸ãåç
§ã
* ã©ã°ã©ã³ã¸ã¢ã³ã«æå³ã¯ç¡ã >> d:id:rikunora:20090327
å¹³åã¨åæ£ã®ç©çã¢ãã«
以ä¸ã¯ãåã¨ã³ããªã¼ããªã忣ã¯ï¼ä¹ã®åãªã®ããd:id:rikunora:20190409 ããåºããªãã±ã®ä¸å¤ªè©±ã
ãªã忣ã¯ï¼ä¹ãªã®ããã¨åãããã¨ããã忣ãæãå°ããããç¹ãå¹³åå¤ã ãããã¨ããã®ãï¼ã¤ã®çã§ããã
ãã®çãç©ççãªã¢ãã«ã«å½ã¦ã¯ããã¨ããããªçµµãæãã¾ãã

ã»åãã¼ã¿ã¨ãã¨ããï¼ç¹ãããã§çµãã ã¨ããï¼ç¹ã¯å¹³åç¹ã§æ¢ã¾ãã
ãã®ã¢ãã«ã§åæ£ã¯ããããã«æºã¾ã£ãã¨ãã«ã®ã¼ãã«å¯¾å¿ä»ãããã¾ãã
忣ãè¶³ãç®ã§ãããã¨ï¼å æ³æ§ï¼ã¯ããã¨ãã«ã®ã¼ä¿ååãã¨ãã¦çè§£ã§ãã¾ãã
ã¨ããã忣ã¯ããããªç©çã¢ãã«ã«å½ã¦ã¯ãããã¨ãã§ãã¾ãã

ã»åãã¼ã¿ã«éã¿ãä»ãã¦ãã©ã³ã¹ãã¨ã£ãã¨ããéå¿ã¯å¹³åç¹ã¨ä¸è´ããã
ãã®ã¢ãã«ã®å ´åã忣ã¯ãæ
£æ§ã¢ã¼ã¡ã³ããã«å¯¾å¿ä»ãããã¾ãã
忣ãè¶³ãç®ã§ãããã¨ï¼å æ³æ§ï¼ã¯ããè§éåéä¿ååãã¨ãã¦çè§£ã§ãã¾ãã
以ä¸ã確çã»çµ±è¨å ¥éï¼å°éããå®ï¼ã¨ããæ¬ããã®å¼ç¨ã
ããã ããè¦ã¦ããã¨ä½ã§ããªãããã ããããã¯âå¹³åã®æã¤æå³âã«ã¤ãã¦ã®ãä¸ã¤ã®ææ³ãç©èªã£ã¦ããã
ã»ã»ã»å¹³åå¤ããã®åå¸ã®ä»£è¡¨ã¨ããçç±ã¯ããã®ã¾ããã®åæ£ãæå°ã¨ãããã¨ã«ãã£ã¦ç¹å¾´ã¥ãããã¦ããããã§ããã
Ï(x)ã質éå¯åº¦ã¨èããã¨ãåæ£ã¯æ £æ§è½çã«å¯¾å¿ãã¦ãããã¨ã¯ã説æãå¾ ããªãã§ãããã
ããã¦èªç±ãªåä½ã®éåã¯ãå ããããåãFï¼è³ªéãï¼ã¨ããã¨ãã
ãããFï¼ï¼ï½''
ã«ãã£ã¦è¨è¿°ããããéå¿ã®æ²ç·éåã¨ã
æ £æ§è½çãIï¼éå¿ããã®åã®å ããããã¨ããã¾ã§ã®è·é¢ãï½ã¨ããã¨
ãããFï½ï¼ï¼©Î¸''
ã«ãã£ã¦è¨è¿°ããããéå¿åãã®å転éåã«ãã£ã¦å®å ¨ã«æ±ºå®ããããã
ã©ããã¦ãéå¿ã®ã¾ãããã«å転ããããããã¨ããã¨ããã®ã¾ããã®æ £æ§è½çãæå°ã ãããã«ä»ãªããªãã
ããã¦éå¿ï½å¹³åãæ £æ§è½çï½åæ£ãã®å¯¾å¿ãè¦ãã¨ããå¹³åã®æã¤æå³ã«ã¤ãã¦ãæ°ããªçè§£ãçããã ããã

ã¨ãã«ã®ã¼ã¨ã¯ããç©ççã«ãæéå¤åã«å¯¾ãã¦ä¸å¤ãªä¿åéãã®ãã¨ã§ãã
è§éåéã¨ã¯ããç©ççã«ãè§åº¦ã®å¤åã«å¯¾ãã¦ä¸å¤ãªä¿åéãã®ãã¨ã§ãã
ç©çå¦ã«ã¯âãã¼ã¿ã¼ã®å®çâã¨åä»ããããå®çãããã¾ãã
æ¨èªçã«è¨ãã¨ãã対称æ§ããã¨ããã«ä¿ååããããã¨ãã£ã主張ã§ãã
ãã¼ã¿ã¼ã®å®çã«ããã¨ã
ãã»æé並é²ã®å¯¾ç§°æ§ãããã¨ãã«ã®ã¼ä¿ååããã
ãã»å転ã®å¯¾ç§°æ§ãããè§éåéä¿ååããã
ãã»ç©ºé並é²ã®å¯¾ç§°æ§ãããéåéä¿ååããã
ããããå°ããã¾ãã
ãªãã°ã忣ããéåéä¿ååãã«çµã³ã¤ãããããªç©çã¢ãã«ã¯ç¡ããã®ã ãããã»ã»ã»
å°ãèãã¦ã¿ãã®ã§ããããã¾ãã¢ãã«ã¯æãã¤ãã¾ããã§ããã
ããããã®ã¯ããã¨ãã«ã®ã¼ã¨è§éåéãï¼æ¬¡å¼ãªã®ã«å¯¾ããéåéä¿ååã¯ï¼æ¬¡å¼ãªã®ã§ãåå°ãã¦ã¯ã¾ããªãã®ã§ãã
â» éåéä¿ååã¯ãâ忣âã§ã¯ãªãâå¹³åâã«çµã³ã¤ãããã¾ãã
â» å¹³åã¯ã確ãã«å¹³è¡¡ç§»åã«ã¤ãã¦å¯¾ç§°ã䏿ã«ã²ã¿ãå±¥ããã¦ãä¸å¤ã§ããããã¾ãã«ãã¢ã¿ãªãã¨ãªã®ã§æèããã¾ããã
話ã¯ããã ããªã®ã§ããã以ä¸ã¯ä½ã忣ã ãã«éã£ã話ã§ã¯ãªããï¼æ¬¡å¼ã§è¡¨ããããããªéå
¨è¬ã«è¨ããããã«æãã¾ãã
ãã¨ãã¨ï¼æ¬¡å¼ã«å½ã¦ã¯ã¾ããããªéã§ããã°ä½ã§ããã
ã¨ãã«ã®ã¼ãè§éåéã«é¢é£ä»ãããã£ã¨ããããç©çã¢ãã«ã¨ãã¦è¡¨ããããã¨ãããã¨ã§ãã
ä¸è¬ã«ãçè§£ã®ä»æ¹ãè§£éã¯ãåã
äººã®ææ§ãã»ã³ã¹ãæè½ã¨ãã£ããã®ã«å§ããããã¨è¨ãããã¡ã§ãã
ãããããã®åæ£ã®ç©çã¢ãã«ãè¦ã¦æããã¨ã¯ã
ãæèã®çéã¨ã¯å
¨ãã®èªç±å¥æ¾ã§ã¯ãªãã¦ãèªãã¨è¦å®ããã¦ãããã¨ãããã¨ã§ãã
ä¸èªç¶ããæããããªãçºæ³ã¯ãæåéãâç©ã®çâã«å¶ã£ã¦ããã®ã§ãã
ããããâç©ã®çâã«å¶ã£ãçºæ³ã ãããåãããããã人ã«ä¼ãããããçµæçã«çãæ®ãã®ã§ã¯ãªããã
ãããªé¢¨ã«æããã®ã§ãã

- ä½è : å°éã¢ãå®
- åºç社/ã¡ã¼ã«ã¼: 岩波æ¸åº
- çºå£²æ¥: 1973/05/31
- ã¡ãã£ã¢: åè¡æ¬
- è³¼å ¥: 5人 ã¯ãªãã¯: 130å
- ãã®ååãå«ãããã° (23ä»¶) ãè¦ã
ãªã忣ã¯ï¼ä¹ã®åãªã®ã
ï¼±ï¼ãªã忣ã¯ãåç´ãªå·®ï¼åå·®ã®çµ¶å¯¾å¤ï¼ã§ã¯ãªããå·®ã®ï¼ä¹ãè¨ç®ããã®ãï¼
Aï¼åæ£ãæãå°ããããç¹ãå¹³åå¤ã ãããï¼åç´ãªå·®ãæãå°ããããç¹ã¯ä¸å¤®å¤ã¨ãªããï¼
â忣âã¨ãããã¼ã¯ã¼ãã¯çµ±è¨å¦ã®åºç¤ä¸ã®åºç¤ã§ãããã©ããªæç§æ¸ã«ãâå¹³åâã®æ¬¡ãããã«è¼ã£ã¦ãããã¨ããã§ãã
ããããªããããããªãç»å ´ããâ忣âã®æå³ãåããããçµ±è¨å¦ã®å
¥ãå£ã§æ«æãã人ã¯å°ãªãããã¾ããã
åå·®ã®ï¼ä¹ã®å¹³åãã¤ã¾ããåå¤ã¨å¹³åã¨ã®å·®ã®ï¼ä¹ã®å¹³åã忣ã¨ããã
忣ã®å¹³æ¹æ ¹ã®æ£ã®æ¹ãæ¨æºåå·®ã¨ããã
çµ±è¨ã§ãã¡ãã°ãã表ããã®ã¨ãã¦ãæ¨æºåå·®ã忣ãå¤ãç¨ããããã
ãããããã-- 髿 ¡ã®æç§æ¸ï¼åæé¤¨ï¼ãã.
æç§æ¸ã«ã¯ãã®ããã«æ¸ããã¦ããã®ã§ãããããã§åãã£ãæ°ã«ãªãã§ããããã
ãã»ãªããå·®ã®ï¼ä¹ãè¨ç®ããã®ãï¼
ãã»å·®ãã®ãã®ã§ãã£ã¦ã¯ãããªãã®ãï¼
ãã»ãªããåæ£ã¨æ¨æºåå·®ã®ï¼ç¨®é¡ãããã®ãï¼
æå¾ã®çåã«ã¤ãã¦ã¯ã忣ãï¼ä¹ããçµæãªã®ã§ãå
ã®åä½ã«æ»ãããã«å¹³æ¹æ ¹ãã¨ãå¿
è¦ããããã®ã ã¨èª¬æããã¾ãã
ãã(æ¨æºåå·®) ï¼ â(忣)
ã ã¨ããã¨ãããããå¤ãï¼ç¨®é¡ä½ããªããã°ãªããªãã£ãçç±ã¯ï¼ä¹ãè¨ç®ããããã§ãã£ã¦ã
æåããå·®ãã®ãã®ãæ¡ç¨ãã¦ããã°ï¼ç¨®é¡ã§æ¸ãã ã¯ãã§ãã
åãã¼ã¿ã¨å¹³åå¤ã¨ã®å·®ã®ãã¨ããåå·®ãã¨è¨ãã¾ãã
忣ã¨ã¯ãåå·®ãï¼ä¹ããå¤ã®å¹³åã®ãã¨ã§ãã
䏿¹ãåå·®ã®å¤ãã®ãã®ï¼çµ¶å¯¾å¤ï¼ã®å¹³åã¯ãå¹³ååå·®ãã¨å¼ã°ãã¦ãã¾ãã
忣ï¼ã¨æ¨æºåå·®ï¼ã«æ¯ã¹ã¦ãå¹³ååå·®ã¯ãã¾ãæåã§ã¯ããã¾ããããå
¨ã¦ã®æç§æ¸ã«è¼ã£ã¦ããããã§ãããã¾ããã

ããä½ã®äºåç¥èãç¡ãã«ãã°ãã¤ããæ°åã§ç¤ºããã¨è¨ããããªãã
ãã¼ã¿ã®å·®ãã®ãã®ãæã£ã¦ããå¹³ååå·®ã®æ¹ããã»ã©èªç¶ã«æãã¾ãã
ãªã®ã«ãªãã仿¥ã®çµ±è¨ã§ã¯ãããããã忣ï¼ã¨æ¨æºåå·®ï¼ã®æ¹ã主æµãªã®ã§ããããã
æ´å²ãæ¯ãè¿ã£ã¦ã¿ãã¨ãåå·®ã®ï¼ä¹ãä¸è¬åãã以åã«ãå·®ãã®ãã®ãã°ãã¤ãã®ææ¨ã¨æãã¦ããææãããã¾ããã
ä¾ãã°ã©ãã©ã¹ã¯ãå·®ãã®ãã®ã誤差æå¤±ã®ææ¨ã¨ãã¦æ±ã£ã¦ããã¨ããçµç·¯ãããã¾ãã
ã¯ã£ããã¨ï¼ä¹ãææ¨ã¨ããããã«ãªã£ãã®ã¯ãã¬ã¦ã¹ã®ç»å ´ä»¥éã®ãã¨ãªã®ã§ãã
Laplaceã¯ãã®ãã¨ãåããããªæ¹æ³ã§èå¯ããããããå½¼ã¯ãã¤ãã«æ£ã¨ãã¦æ±ããã誤差èªèº«ãæå¤±ã®éã¨ãã¦é¸ãã ã
ãããã-- ã¬ã¦ã¹èª¤å·®è«ãã.
â æå°ï¼ä¹æ³ã®ããã
ã§ã¯ãªããã¬ã¦ã¹ã¯ï¼ä¹ãèããã®ãã
ãã®å¿ãç¥ãã«ã¯ãã¬ã¦ã¹ã®ãå®¶è¸ã§ããâæå°ï¼ä¹æ³âãã²ãã¨ãã®ãæ©éã§ãã
æå°ï¼ä¹æ³ã¨ã¯ã誤差ãå«ãã ãã¼ã¿ã«å¯¾ãã¦ããã£ã¨ãããå½ã¦ã¯ã¾ãé¢ä¿ãè¦åºãæ¹æ³ã§ãã
ä¾ãã°ãã¨ããã°ã«ã¼ãã®èº«é·ã¨ä½éã®ãã¼ã¿ãããããªé¢¨ã ã£ãã¨ãã¾ãããã

ããã§ã身é·ãé«ãã»ã©ä½éãéããã¨ããé¢ä¿ãï¼æ¬ã®ç´ç·ã§ç¤ºãã«ã¯ãã©ã®ããã«ç·ãå¼ãã®ããã£ã¨ãåççã§ããããã
æå°ï¼ä¹æ³ã§ã¯ã次ã®ããã«èãã¾ãã

䏿¬ã®æ£ã¨ãããããã®ãã¼ã¿ã®éãããã§çµãã§å¼ã£å¼µãã¨ãæ£ã¯ã»ã©ããã¨ããã«è½ã¡çãã¾ãã
ãã®è½ã¡çããå
ã®ç¶æ
ãããã£ã¨ãå½ã¦ã¯ã¾ããè¯ããã¨è¦ãªãã®ããæå°ï¼ä¹æ³ã®èãæ¹ã§ãã
ãªãï¼ä¹ãªã®ãã¨ããã¨ãããã¯å¼ã£å¼µãã°å¼ã£å¼µãã»ã©ãé·ãã«æ¯ä¾ããåããããããã§ãã
ããã®é·ããï¼åã«å¼ã伸ã°ãã«ã¯ã
ãã»é·ããï¼å
ãã»åãï¼å
åããã¦ï¼Ãï¼ï¼ï¼åã®ã¨ãã«ã®ã¼ãå¿
è¦ã§ãã

ãããï¼ä¹ã®ç±æ¥ã§ãã
æå°ï¼ä¹æ³ã¨ã¯ãã¤ã¾ããããã«æºã¾ã£ãã¨ãã«ã®ã¼ãæå°ã¨ãªãä½ç½®ãæ¢ãæ¹æ³ãã®ãã¨ã ã£ãã®ã§ãã
* â«ãã§ãã£ã¨ä¼¸ã³ãã¯ã¨ãã«ã®ã¼ãããã¯çãç¥ã£ã¦ãã
>> http://miku.motion.ne.jp/multi/01_MinSquare.html
ãã¾ãï¼æ¬¡å
ã®ã°ã©ãã§è¦ãæ¹æ³ããããã«åç´åãã¦ï¼æ¬¡å
ã¨ãã¦ã¿ã¾ãããã
è¤æ°åã®ãã¼ã¿ã¨ãèªç±ã«åããããã¨ããï¼ç¹ãããã§çµãã ã¨ããããã¨ããï¼ç¹ã¯ã©ãã«è½ã¡çããã
è½ã¡çãå
ã¯ãã¡ããã©ãã¼ã¿ã®å¹³åå¤ã¨ãªãã¾ãã

â» ï¼æ¬¡å
ã®å ´åãå½ã¦ã¯ããç´ç·ï¼å帰ç´ç·ï¼ã¯å¿
ãå¹³åå¤ãéãã¾ãã
å¹³åå¤ã¨ã¯ããããã«æºã¾ã£ãã¨ãã«ã®ã¼ãæå°ã¨ãªãç¹ãã®ãã¨ã ã£ãã®ã§ãã
ããã¦ãããã«æºã¾ã£ãã¨ãã«ã®ã¼ãã¨ã¯ãåãã¼ã¿ã¨å¹³åã¨ã®å·®ã®ï¼ä¹ãã¤ã¾ãåæ£ã«æ¯ä¾ãã¦ãã¾ãã
ãããã¦æå
ã®ãã¼ã¿ããããã£ã¨ãå½ã¦ã¯ã¾ãã®è¯ãç¹ãæ¢ããã¨èããã¨ããåæ£ã®æå°åã¨ããã¢ã¤ãã¢ã«å°ãããããã§ãã
â 忣ã®å æ³æ§
ããã§ï¼ã¤ã¯ã¤ãºã
ããåããå¹³åï¼cmã®æåèªãï¼å¹´åç©ã¿ä¸ããããé«ãã¯å¹³åã§ä½cmã«ãªããï¼ã
çã¯å½ç¶ãï¼ï¼cmã
ã§ã¯æ¬¡ã«ã
ãããã®éèªã®ã°ãã¤ãã¯Â±ï¼mmã ã£ããï¼å¹´åç©ã¿ä¸ããã¨ããã°ãã¤ãã¯Â±ä½mmã«ãªããï¼ã
ããã§ã®ãã°ãã¤ãã±ï¼mmãã®æå³ã§ããã話ãåç´åãã¦ãéèªã®åãã«ã¯ 9mm 㨠11mm ã®ï¼ç¨®é¡ããç¡ãã¦ã
ãã®ï¼ç¨®é¡ãæ¯æã©ã³ãã ã«çºè¡ããããã®ã¨ãã¾ãããã
çã®é¸æè¢ï¼ï¼å¹´åã®ã°ãã¤ãã¯ã»ã»ã»
ã(a) ±ï¼ï¼mmãã±ï¼mm à 12ã¶æã ããã
ã(b) ±ï¼mmãããï¼ã¨ï¼ãæã¡æ¶ãåã£ã¦ï¼ã«ãªãã®ã§ã
ã(c) ±ï¼ï¼mm ã§ã ±ï¼mm ã§ããªããä¸éåç«¯ãªæ°ã
ã
ã
ã
ã
ã
ããããã»ã»ã»ã¡ãã£ã¨èãã¦ã¿ããã»ã»ã»
ã
ã
ã
ã
ã
æ£è§£ã¯ (c)ã
試ã㫠±1 ã®ä¹±æ°ãï¼ï¼åãä½åãè¶³ãåãããå¹³åã®çµ¶å¯¾å¤ãã¨ã㨠2.7mm ãããã®å¤ã¨ãªãã¾ãã
ï¼ï¼é
ä¿æ°ãç¨ãã¦è©³ããè¨ç®ãã㨠2.70703125... ã¨ãã£ãå¤ã«ãªãã¾ããï¼
ã¤ã¾ããã°ãã¤ãã«é¢ãã¦ã¯åç´ãªè¶³ãç®ãã§ããªãã¨ãããã¨ã§ãã
ä½ã¨ã䏿ãå
·åã«âã°ãã¤ãã®è¶³ãç®âãã§ããªããã®ã ãããã»ã»ã»
ããã§ç·¨ã¿åºãããã®ããï¼ä¹ããã°è¶³ãç®ã§ãããã¨ããã¢ã¤ãã¢ã§ãã
±ï¼mm ã®ä¹±æ°ãï¼ï¼åãã£ãã¨ãã¦ãããããããã è¶³ãåãããã®ã§ã¯ãªããï¼ä¹ãã¦è¶³ãåããã¦ã¿ã¾ãããã
ãã(±1)^2 + (±1)^2 + (±1)^2 + ・・・ ±1)^2 = 12
ãããªãåã
ã®ã°ãã¤ãããã©ã¹ã§ãã£ã¦ããã¤ãã¹ã§ãã£ã¦ããåè¨ã¯ç¢ºå®ã«+12ã¨ãªãã§ãããã
ãã®ããã«ãï¼ä¹ããå¤ã«ãã£ã¦ã°ãã¤ããæ°ããã®ãã忣ã¨ããææ¨ã ã£ãã®ã§ãã
ãã»éèªï¼åãããã®åæ£ ããï¼ ãï¼
ãã»12åç©ã¿éããå
¨ä½ã®åæ£ ï¼ ï¼ï¼
ãããâ»12åã®ãµã³ãã«ããããããã£ãã¨ãã®åæ£ãã¤ã¾ãæ¯å¹´ã®éèªã®å±±ããããã並ã¹ãã¨ãã®ã°ãã¤ãã
忣ã¯è¶³ãç®ãããã¨ãã§ããã
ãã®æ§è³ªã忣ã®å æ³æ§ã¨è¨ããã¨ãããã¾ãã
ããããè¶³ãç®ãã§ãããããªææ¨ãæ¢ããã¨ããããã¾ããã£ãã®ã忣ã§ãã£ããã¨ããã®ã宿
ã§ãããã
ã§ã¯ãéèªï¼å¹´åã®åæ£ã12ã ã£ãã¨ãã¦ãå®éã«éèªã®å±±ã®é«ãã¯Â±ä½mmç¨åº¦ãªã®ã§ããããã
ããã§åæ£ã®å¹³æ¹æ ¹ãã¨ã£ã¦ãå
ã®æ¬¡å
ã«æ»ããã®ãæ¨æºåå·®ã§ãã
ä»ã®å ´åã
ãã(æ¨æºåå·®) = â12 = 3.46mm
ã¨ãã£ãå¤ã¨ãªãã¾ãã
â» æ¨æºåå·® 3.46mm ã¯ãå°ãä¸ã«æ¸ããå¹³ååå·® 2.71mm ã¨ã¯ç°ãªãã¾ãã
â» æ¨æºåå·®ã¯åå·®ï¼ä¹åã®å¹³åãå¹³ååå·®ã¯å差絶対å¤ã®å¹³åã§ã â ãã¤ããããã§ããããããã¨ãããééãã®ã§ã
â 忣ã®ã¨ãã«ã®ã¼è§£é
ãã»åæ£ã¨ã¯ãããã«æºã¾ã£ãã¨ãã«ã®ã¼ãã®ãã¨ã
ãã»åæ£ã¨ã¯ãè¶³ãç®ã§ããããã«ãç·¨ã¿åºãããã°ãã¤ãã®ææ¨ã
ãã®ï¼ã¤ãããªã忣ãï¼ä¹ãªã®ããã«ã¤ãã¦ã®ä¸»ãªçã«ãªãã¨æãã¾ãã
ããã«ç©¿ã£ãè¦æ¹ããããªãã°ããã®ï¼ã¤ã¯å¥ã
ã®äºæã§ã¯ãªããå
±éã®å
容ãå«ãã§ããã¨è§£éãããã¨ãã§ããã§ãããã
ããããã¨ãã«ã®ã¼ã¨ã¯ä½ã ã£ããã¨ããã°ã
ããç©ççã«ãæéå¤åã«å¯¾ãã¦ä¸å¤ãªä¿åéã
ã®ãã¨ã§ããã
ä½ããã®ãã¼ã¿æä½ã«ã¤ãã¦ãä¾ãã°ä¸ã«è¿°ã¹ãâããã¨æ£âã®ãããªç©ççãªã¢ãã«ãèãããªãã
ãã®ã¢ãã«ä¸ã§è¶³ãç®ã§ããä¿åéã¯ãèªãã¨ã¨ãã«ã®ã¼ã«å¯¾å¿ä»ããããã¯ãã§ãã
ãã¨åæ£ã«ã¤ãã¦ã¯ããå¤ä½ã®ï¼ä¹ã§æºã¾ãã¨ãã«ã®ã¼ã®ãããªä¿åéãã¨ããã¤ã¡ã¼ã¸ã§ææ¡ã§ããã¨æãã¾ãã
ãã®ç·ã§æ¨æºåå·®ã«è§£éãå ãããªãã
ããåãã¼ã¿ã«ã¨ãã«ã®ã¼ãçããåé
ããã¨ããï¼åãããã®ãã¼ã¿ãå¤ä½ãã大ããã
ã¨ãããã¨ã«ãªãã¾ãã
â æå°çµ¶å¯¾å¤æ³ã§ã¯ãã¡ãªã®ã
以ä¸ã忣ï¼ã¨æ¨æºåå·®ï¼ããããã«ã°ãã¤ãã®ææ¨ã¨ãã¦åççã§ããããè¦ã¦ãã¾ããã
ãªãã°ãã°ãã¤ãã®ææ¨ã¯åæ£ã ããå¯ä¸ç¡äºã§ããããã以å¤ã«ã¯ããå¾ãªãã®ã§ããããã
å®ã¯ããã§ãç¡ãã®ã§ãã
忣ã¯ãä¸è¬çã«ã¯æãåªããææ¨ãªã®ã§ãããå ´åã«ãã£ã¦ã¯åæ£ä»¥å¤ã®ææ¨ãæç¨ãªãã¨ãããã¾ãã
å
ã«ã忣 ï½ æå°ï¼ä¹æ³ã«åºã¥ãã¦ãã¼ã¿ã®å½ã¦ã¯ã¾ããèããã®ã§ããã
次ã«ãåå·®ã®å¤ãã®ãã® ï½ âæå°çµ¶å¯¾å¤æ³âã«åºã¥ããã¼ã¿ã®å½ã¦ã¯ã¾ããèãã¦ã¿ã¾ãããã
ï¼æ¬¡å
ã®å ´åããããã¼ã¿ãï¼ã¤ã ãã ã£ããªãã
ãã£ã¨ãå½ã¦ã¯ã¾ãã®è¯ãç¹ã¯ãï¼ã¤ã®ãã¼ã¿ã®éã®ã©ãã§ãè¯ããã¨ã«ãªãã¾ãã

ãã®ããã«æå°çµ¶å¯¾å¤æ³ã«ã¯ãçµæãï¼ç¹ã«è½ã¡çããªãã¨ãã£ãä¸å®æ§ãããã¾ãã
ãããæå°çµ¶å¯¾å¤æ³ ï½ å¹³ååå·®ãæµè¡ããªãï¼ã¤ã®çç±ã§ãã
ãã¼ã¿ã®æ°ãããå°ãå¢ããã¦ã¿ã¾ãããã
ãããã¼ã¿ãï¼ã¤ã ã£ããªããæå°çµ¶å¯¾å¤æ³ã«ãããã£ã¨ãå½ã¦ã¯ã¾ãã®è¯ãç¹ã¯ãä¸å¤®ã®ï¼çªç®ã®ç¹ã«ãªãã¾ãã

å¹³ååå·®ãåºæºã«èãããªãã
ãã»ãã¼ã¿ã奿°åã®å ´åãé ä½ãä¸å¤®ã®ç¹ã¨ãªãã
ãã»ãã¼ã¿ãå¶æ°åã®å ´åãé ä½ãä¸å¤®ã«æãè¿ãï¼ç¹ã®éã®ã©ãã§ãããã
ã¤ã¾ãããã¯ãä¸å¤®å¤ãã¨ãããã¨ã§ãã
â» ä¸å¤®å¤ã®å®ç¾©ã¨ãã¦ã¯ããã¼ã¿ãå¶æ°åã®å ´åãä¸å¤®ã«æãè¿ãï¼ç¹ã®ã¡ããã©ä¸éï¼å¹³åï¼ã¨ãªãã¾ãã
ã»åæ£ãããï¼åå·®ã®ï¼ä¹ã®å¹³åå¤ããï¼ãæå°ï¼ä¹æ³ããï¼ãæå°ã¨ãªãç¹ã¯å¹³åå¤
ã»å¹³ååå·®ãï¼åå·®ã®çµ¶å¯¾å¤ã®å¹³åå¤ãï¼ãæå°çµ¶å¯¾å¤æ³ãï¼ãæå°ã¨ãªãç¹ã¯ä¸å¤®å¤
ãã®ããã«å¯¾æ¯ããã¦ã¿ãã°ã決ãã¦â忣ãåªãã¦ãã¦ãå¹³ååå·®ãå£ã£ã¦ããâããã§ã¯ç¡ãã®ã ã¨åããã§ãããã
ããã«è峿·±ãã®ã¯ãï¼æ¬¡å
ã®å ´åã§ãã
ä¸è¬ã«ããç¨ãããã¦ããæå°ï¼ä¹æ³ã§ã¯ãªããæå°çµ¶å¯¾å¤æ³ã«ããç´ç·ã®å½ã¦ã¯ãããããã¯ããã§ã¢ãªãªã®ã§ãã
* æå°çµ¶å¯¾å¤æ³ã«ããå帰åæ
>> http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.40_02_261.pdf
* æå°äºä¹ã¨æå°çµ¶å¯¾å¤ï¼ããã¹ãå帰ã§å¤ãå¤åæ
>>https://biolab.sakura.ne.jp/robust-regression.html
* Excelã§æãï¼èª¤å·®ã®çµ¶å¯¾å¤åãæå°ã«ãã
>> http://godfoot.world.coocan.jp/Abs_Min.htm
æåã®ãªã³ã¯å ã«ãã©ãã©ã¹ã®èããæå°çµ¶å¯¾å¤ã«åºã¥ãæ¹æ³ãè¼ã£ã¦ãã¾ããã
ãã®å帰åæè¦æºï¼1ï¼ãæè¯ã®ãã®ã¨èãï¼ãã®ã¢ã«ã´ãªãºã ãæåã«ææ¡ããã®ã¯Laplaceï¼»PiereSimmonMarquisdeLaplaceï¼1749ï¼1827ï¼½ã§ããã
ãªã³ã¯å ã®èª¬æãåèã«ãã©ãã©ã¹ã®èããç´ç·å½ã¦ã¯ãã®æ¹æ³ã試ãã¦ã¿ã¾ããã
ã»åç¹ãéãç´ç·ãèããã
ã»åãã¼ã¿ãå¾ãã®é çªã«ä¸¦ã¹ããY1/X1 >= Y2/X2 >= Y3/X3 ・・・ Yn/Xn
ã»X1 + X2 + X3 ・・・ + Xr-1 < Xr + Xr+1 + Xr+2 ・・・ + Xnããã¤
ãX1 + X2 + X3 ・・・ + Xr > Xr+1 + Xr+2 ・・・ + Xnãã¨ãªã r ãæ¢ãã
ãã¤ã¾ããå¾ãã®å¤§ããæ¹ãã X ãåè¨ãã¦ãã£ã¦ãåè¨å¤ãæ®ãã®åè¨ãã¡ããã©è¶ããçªå· r ãæ¢ãã
ã»æãå½ã¦ã¯ã¾ãã®ããå¾ãã¨ãã¦ãYr/Xr ãæ¡ç¨ããã

ããã¯å½ã¦ã¯ãçµæã®ï¼ä¾ã§ãã
éç·ãæå°ï¼ä¹æ³ã赤ç·ãã©ãã©ã¹ã®èããæå°çµ¶å¯¾å¤æ³ã§ãã
ãã®ä¾ã®ããã«æ¥µç«¯ãªå¤ãå¤ãæ··ãã£ã¦ããå ´åãæå°ï¼ä¹æ³ã¯å¤ãå¤ã«å¼ã£å¼µãããããå½ã¦ã¯ã¾ããæªããªãã¾ãã
ä¸å¤®å¤ãå¹³åå¤ã«æ¯ã¹ã¦å¤ãå¤ã«å¼·ãããã«ãæå°çµ¶å¯¾å¤æ³ã«ã¯å¤ãå¤ã«å¯¾ãã¦é å¥ãªæ§è³ªãããã¾ãã
å帰åæã®ãã¦ãã¾ãè©ä¾¡ã®ææ¨ã¨ãã¦ãRMSE, ã¾ã㯠MAE ã¨ããå¤ãããç¨ãããã¾ãã
ãããã¯ä½ãªã®ãã¨ããã¨ã忣ã¨å¹³ååå·®ããããã¯å¹³åå¤ã¨ä¸å¤®å¤ãã¨ãã並ã³ã«ä½ç½®ã¥ãããããã®ã§ãã
* å¹³åå¹³æ¹äºä¹èª¤å·® = RMSEï¼Root Mean Square Errorï¼
ã»RMSE ã®æå°å = äºä¹èª¤å·®ã®æå°å = èª¤å·®ã«æ£è¦åå¸ãä»®å®ããå ´åã®æå°¤æ¨å®
* å¹³å絶対誤差 = MAEï¼Mean Absolute Errorï¼
ã»MAE ã®æå°å = çµ¶å¯¾èª¤å·®ã®æå°å = 誤差ã«ã©ãã©ã¹åå¸ãä»®å®ããå ´åã®æå°¤æ¨å®
ã-- 精度è©ä¾¡ææ¨ã¨å帰ã¢ãã«ã®è©ä¾¡
ã>> https://funatsu-lab.github.io/open-course-ware/basic-theory/accuracy-index/
ãããã¯æè¿æµè¡ãã®æ©æ¢°å¦ç¿ã«ç»å ´ãã L1æ£åå(Lasso), L2æ£åå(Ridge) ã¨ãã£ããã¼ã¯ã¼ããããã¯ããããã®æ¦å¿µã®å»¶é·ä¸ã«ä½ç½®ã¥ãããã¾ãã
â ã¬ã¦ã¹èª¤å·®è«ãã
ãªãï¼ä¹ãªã®ãããã®æºæµãé¡ãã¨ãã¬ã¦ã¹ã®èª¤å·®è«ã«ãã©ãçãã¾ãã

確ãã«ï¼ä¹ã¯åªããæ¦å¿µãªã®ã ãããªãã°ï¼ä¹ãæ¯ããæ ¹æ ã»åçã¯ä½ãªã®ããï¼ä¹ä»¥å¤ã®æ¦å¿µã¯ããå¾ãªãã®ãã
ç§ã¯é·ãããã®çåãæ±ãã¦ããã®ã§ãããå
ç¥ã¬ã¦ã¹ã®è¨èã«ããããçãè¦ãããã«æãã¾ãã
ä»ããã§ãããï¼æ¨æ¸¬ï¼çµ±è¨å¦ã¨ã¯ãã¼ã¿ãã帰ç´çã«å°ããããã®ã§ããã
ä»ã®æ°å¦ã®ããã«åçååããæ¼ç¹¹çã«å°ããããã®ã§ã¯ããã¾ããã
ãã®æå³ã§ãï¼ä¹ãå¯ä¸çµ¶å¯¾ã®æ¹æ³ã§ã¯ç¡ãã£ãã®ã§ãã
ãã ããã£ããï¼ä¹ãé¢ãã¦ä»ã®ããããæ¹æ³ã¨æ¯ã¹ã¦ã¿ãã¨ãæ¹ãã¦ï¼ä¹ãããæãåç´ã§é©ãã¦ããã¨èªããããå¾ã¾ããã
ããã忣ãï¼ä¹ã§æ°ããçç±ã§ããã仿¥ã«è³ãã¾ã§çµ±è¨å¦ã®æ ¹åºã«æµãç¶ããåºç¤ã ã£ãã®ã§ãã

- ä½è : ã«ã¼ã«ã»F.ã¬ã¦ã¹,Carl Friedrich Gauss,é£ç°æ¦å¹¸,ç³å·èæ¥
- åºç社/ã¡ã¼ã«ã¼: ç´ä¼å屿¸åº
- çºå£²æ¥: 1981/05/01
- ã¡ãã£ã¢: åè¡æ¬
- ãã®ååãå«ãããã°ãè¦ã
â Python ã«ãã Laplaceã®çµ¶å¯¾å¤å帰
# -*- coding: utf-8 -*- # # Laplaceã®çµ¶å¯¾å¤å帰 import numpy as np import matplotlib.pyplot as plt # ç´ç·å帰ãè¡ã def fit_line(x, y): mx = np.mean(x) my = np.mean(y) myx = np.mean(y * x) mxx = np.mean(x * x) w0 = (myx - my * mx ) / (mxx - mx ** 2) w1 = my - w0 * mx return ( w0, w1 ) # é©å½ãªç´ç·ï¼ä¹±æ°ãã¼ã¿ãç¨æ N_SAMPLE = 10 ALPHA = 0.0 # åçã¯ï¼ã«éå®ãã BETA = 0.3 EPS = 0.1 X = np.random.rand(N_SAMPLE) # Y = ALPHA + BETA * X + np.random.normal(0, EPS, N_SAMPLE) # æ£è¦ä¹±æ° # Y = ALPHA + BETA * X + EPS * (np.random.rand(N_SAMPLE) - 0.5) # 䏿§ä¹±æ° Y = ALPHA + BETA * X + EPS * np.random.standard_cauchy(size=N_SAMPLE) # ã³ã¼ã·ã¼åå¸ # ãã®å ´åãLaplaceå帰ã¯ãã£ããããæãã # Y = ALPHA + BETA * X + np.random.laplace(loc=0.0, scale=EPS, size=N_SAMPLE) # ã©ãã©ã¹åå¸ # Laplaceå帰ãæå°¤å¤ã«ãªãã¨ããã #### # ã¾ãã¯æ®éã®ç·å½¢å帰ããã£ã¦ã¿ãã lin, seg = fit_line( X, Y ) print( "ç·å½¢å帰ã®å¾ã,åç = {:.4f}, {:04f}".format( lin, seg ) ) #### # 以ä¸ãLaplaceã®èããæ¹æ³ã§å帰ããã£ã¦ã¿ã YperX =Y / X # åã ã®ç¹ã®å¾ããªã¹ã Slp_index = {} # index->å¾ããªã¹ããä½ã for idx in range(N_SAMPLE): Slp_index[idx] = YperX[idx] # å¾ãã®å¤ã§éé ã«ã½ã¼ããã x_list = [] idx_list = [] for key, val in sorted(Slp_index.items(), key=lambda x: -x[1]): # print( "{{ {} : {} }}, X={}".format( key, val, X[key] ) ) idx_list.append(key) x_list.append( X[key] ) # Xã®ååã®åè¨å¤ãå¾åã®åè¨å¤ãè¶ããå¢çãæ¢ã r_index = 0 for r in range( N_SAMPLE+1 ): pre = x_list[ 0 : r ] # åå post = x_list[ r : len(x_list)+1 ] # å¾å if sum(pre) >= sum(post): # print( "Pre:", pre, "len=", len(pre) ) # print( "Post:", post, "len=", len(post) ) r_index = r -1 # ã¤ã³ããã¯ã¹ãªã®ã§ï¼å¼ãã break x_esti = idx_list[ r_index ] # print( "x_ans={}, X={}, YperX={}".format( x_ans, X[x_esti], YperX[x_esti] ) ) lap = YperX[x_esti] print( "Laplaceå帰ã®å¾ã = {:.4f}".format( lap ) ) # ã°ã©ãåºå xlist = np.arange(0, 1, 0.01) # 0.01åä½ã§ç´°ããããããããç·ã¨ãã¦åºåããã ylist_lsq = [ (lin * x + seg) for x in xlist ] # ç·å½¢å帰 ylist_lap = [ (lap * x) for x in xlist ] # Laplaceã«ããå帰 plt.plot(X, Y, 'o') # å ãã¼ã¿ plt.plot(xlist, ylist_lsq, color="blue", label="lsm") # ç·å½¢å帰 plt.plot(xlist, ylist_lap, color="red", label="laplace") # Laplaceã«ããå帰 plt.legend(loc='lower right') plt.show()

