ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸è§£é
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã¨ã¯ãè§£æåå¦ãåãã¨ããç©çå¦ã®åºç¤ãæãæ¹ç¨å¼ã§ãã
ãâL( q(t), q'(t), t )/âq(t) - d/dt{âL( q(t), q'(t), t ) /âq'(t) } = 0
ãããã-- wikipedia:ãªã¤ã©ã¼ï¼ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼
ã¡ããã©é¢æ°ã®æå°å¤ãæ±ãããã¨ããå¾®åï¼ï¼ãã調ã¹ãã®ã¨åãããã«ã
æ±é¢æ°ï¼é¢æ°ã®é¢æ°ï¼ã®æå°å¤ãæ±ãããã¨ãããã®ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã調ã¹ã¾ãã
ãã ããå¾®åï¼ï¼ãã«ã¯âè°·åºã®å¾ãã¯å¹³ãã«ãªãâã¨ããæç¢ºãªã¤ã¡ã¼ã¸ãæããã®ã«æ¯ã¹ã¦ã
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸ãæãæãã®ã¯ããªãé£ããã
æ°å¦ãç¸å½å¾æãªäººã§ãã£ã¦ããè¨å·ã®åé¢ã追ãã®ãç²¾ä¸æ¯ãã¨ããã®ã宿
ã§ãããã
ã©ã°ã©ã³ã¸ã¥ã®ãè§£æåå¦ãã¨ããæ¬ã«ã¯ãã¤ã¡ã¼ã¸ãå©ããå³ãä¸åããã¾ããã
ãç·è¨ãã§ã©ã°ã©ã³ã¸ã¥èªèº«ãè¿°ã¹ã¦ããããã«ï¼ãã®æ¬ã«ã¯ãå³ãã¾ã£ããè¦åºããããï¼å¿ è¦ã¨ãããã®ã¯ã代æ°çãªæä½ã®ã¿ãã§ããï¼
ã-- <翻訳> Jã»Lã»ã©ã°ã©ã³ã¸ã¥ãè§£æåå¦ã(æ)
ã-- https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/137415/1/phs_5_127.pdf
ããããè§£æåå¦ã¨ã¯ã
ã代æ°çãªæä½ãããæ£å½ã§ãããå¹¾ä½å¦çãªå³ã¯æ¬æ¥æé¤ãããã¹ãè£å©ææ®µã«éããªãã
ã¨ããææ³ã®ç£ç©ã ã£ãã®ã§ãã
ãã®ææ³ã¯ç¾ä»£ã§ããªãæå¹ã§ãé«åº¦æ½è±¡çãªå¯¾è±¡ãåã«ãã¦ãç§ãã¡ã¯
ãã¤ã¡ã¼ã¸åãã¹ãããªè«¦ãããã
ãéªéã§ãã£ã¦ãå³ãæãæããã
ã®ï¼æãè¿«ããã¦ããããã§ãã
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ãé£ããã¨æããæ¬å½ã®çç±ãããã«ãã£ã¦ã
æåããã¤ã¡ã¼ã¸åã諦ãã¦ããã£ãæ¹ããããåã容ãããããã¨ããå´é¢ãããã¾ãã
ã«ãããããããããã§ã¯ããã¦éªéãªã¤ã¡ã¼ã¸åã®æ¹æ³ã試ã¿ã¾ãã
ã©ã°ã©ã³ã¸ã¥ããã«ã¯ç³ã訳ãªãã®ã§ãããç§ãã¡å¡äººã¯ã¤ã¡ã¼ã¸åãã¦åãã¦è
ã«è½ã¡ãã¨æããããã§ãã
ã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®éª¨æ ¼ãèªã¿è§£ãããããã£ããâå¾®åâã¨ããè¦ç´ ãæ£ä¸ããã
ã¾ãâ颿°ã®é¢æ°âã¨ããè¦ç´ ã ãã«çç®ãã¾ãããã
ãã¾ã
ãã L(t) = t^2 - 2 t
ã¨ãããt ã®é¢æ°ããã£ãã¨ãã¾ãããã
ããã§ L ã®æå°å¤ãæ±ããã¨åãããã°ã颿° L(t) ã t ã§å¾®åããã®ãå¸¸å¥ææ®µãªã®ã§ããã
ããã§ã¯ããã¦æ¬¡ã®ãããªè¦æ¹ãã¨ãã¾ãã
ãã T(t) = t^2
ãã U(t) = 2 t
ã¨ç½®ãã¦ã
ãã L( T(t), U(t) ) = T(t) - U(t)
ã¨ããâT 㨠U ã®é¢æ°Lâãä½ãã¾ãã
ãã®ã¨ã L ã®æå°å¤ãæ±ããã«ã¯ã
T 㨠U ãã¡ããã©ãã©ã³ã¹ãã¨ã£ã¦çãããªãç¹ãT' = U' ãæ¢ãã°ããã
ã¨ãããã¨ã«ãªãã§ãããã
ããT'(t) = 2 t
ããL'(t) = 2
ããã2 t = 2 ãè§£ãã¦ãt = 1 ã®ã¨ã L ã¯æå°ã¨ãªãã

ãããªæéãããã¦ä½ãå¬ããã®ãã¨ããã¨ãæå°å¤ã«ã¤ãã¦ã®ã¤ã¡ã¼ã¸ãå¤ããã¾ãã
颿° L(t) ãç´æ¥ t ã§å¾®åããã¨ããæå°å¤ã¨ã¯âå¾ããï¼ã¨ãªãç¹ãæ¢ãâã¨ãããã¨ã§ããã
䏿¹ãL(T,U) = T - U ã鿥çã« t ã§å¾®åããã¨ããæå°å¤ã¨ã¯âT' 㨠U'ããã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåã£ãã¨ãâã¨ããæå³ã«å¤ããã¾ãã
âå¾ããï¼ã¨ãªãç¹âã¨ããè¦æ¹ããããªããæå°å¤ã¯âç¹âã¨ãã¦å¾ããã¾ããã
䏿¹ãâãã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåãâã¨ããè¦æ¹ããããªãã
T'=U' ãæºããç¹ãåæãããã¨ã§ãæå°å¤ãâç·âã¨ãã¦å¾ãéãæãã¾ãã

ããã«å¤åæ³ ï½ æå°ã¨ãªã颿°ãæ±ããæ¹æ³ ï½ ã®ã«ã©ã¯ãªãããã¾ãã
è§£æåå¦ã«ãããããã©ã³ãã¼ã«ã®åçãããçµå±ã¯ãã®âãã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåãâãã¨ãæå³ãã¦ãã¾ãã
éåããç©ä½ã¯ã屿屿ã«ããã¦ãéçãªåã¨ãåçãªå éï¼ã«ç±æ¥ããåï¼ãæã¡æ¶ãåã£ã¦ããã
ãªã®ã§ããããããã©ã³ã¹ãä¿ã¤ç¹ãç·ã§çµã¹ã°ãéåã®è»è·¡ãèªãã¨æµ®ãã³ä¸ããã ããã
ããããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ãå½¢ä½ãã¢ã¤ãã¢ã ã£ãã®ã§ãã
âãã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåãâãã¨ãçµæ¸ã«ä¾ãããªããéè¦ã¨ä¾çµ¦ã®åè¡¡ç¹ã®ãããªãã®ã§ãã

ãã-- wikipedia:éè¦ã¨ä¾çµ¦ ããå¼ç¨
ã©ã°ã©ã³ã¸ã¢ã³ã¨ã¯ãä½è¨ãªã¨ãã«ã®ã¼ã³ã¹ãã¨ããæå³ã§ãçµæ¸ã§è¨ãã¨ããã®ã³ã¹ãã¨é«ãè¦ªåæ§ãããã¾ãã
ä»®ã«ãé給ã®ãã©ã³ã¹ãã¨ããå§¿ãå®ç¾ãã¹ã社ä¼ã§ãããã¨èãããªãã
é給ãã©ã³ã¹ãåçååã¨ãã¦ã社ä¼ã®å§¿ãäºè¨ï¼è¨ç®ï¼ã§ãããã¨ã«ãªãã§ãããã
ãã¨ãã°åæä¾¡æ ¼ã横軸ã«ã¨ã£ã¦ãåè¡¡ç¹ãç·ã§çµã¹ã°ãåæä¾¡æ ¼ã«å¯¾ãã驿£ãªçç£éã®ã°ã©ããæãã¾ãã
ãããã¯ãããæ¶è²»è
ã®æºè¶³åº¦ã®ãããªãã®ãæ°å¤åã§ããã°ã
æºè¶³åº¦ã横軸ã«ã¨ã£ã¦åè¡¡ç¹ãç·ã§çµã¹ã°ã驿£ä¾¡æ ¼ã®ã°ã©ããä½ããã¯ãã§ãã
â» ç§ã¯çµæ¸å¦ã«ã¯çãã®ã§ãããã©ããæ¨ä»ã®çµæ¸å¦ï¼ã®ä¸æ´¾ï¼ã¯ãããããäºããã£ã¦ããã¿ããã§ãã
â» ã大å¦äºåçã®ã¨ãã«ãè§£æåå¦ãã®è¬ç¾©ã§ç¿ã£ãã©ã°ã©ã³ã¸ã¥ã®æ¹ç¨å¼ãããªãããã¯ãçµæ¸å¦ã®æç§æ¸ã«ãã®ã¾ã¾æ¸ããã¦ããã®ã§ãããã
â» * ç¾å®ã¨éã£ã¦ãæ°å¦ã¢ãã«ãä¿¡ä»°ãã¦ãã¾ãçµæ¸å¦è
ãã¡ >> http://data11.web.fc2.com/jiyuuboueki5.html
é給ãã©ã³ã¹ã®ä¾ã§è¨ãã¨ããªãªã¸ãã«ã®ã°ã©ãã¯æ¨ªè»¸ããæ°éãã¨ãªã£ã¦ãã¾ãã
ãã®ï¼æã®ã°ã©ãããå¾ãããçã¯ãåè¡¡ç¹ãã¨ãããã ï¼ç¹ã®ã¿ã§ããã
ããã ãã§çµãã£ã¦ãããªããé給ãã©ã³ã¹ã®ã¢ã¤ãã¢ã¯ããã¾ã§ããããããããªãã£ããã¨ã§ãããã
é給ãã©ã³ã¹ãæç¨ãªã®ã¯ããªãªã¸ãã«ã®ã°ã©ãã®ä¸ã«ããã«ããï¼æ¬¡å
ãåæä¾¡æ ¼ã¨ããæºè¶³åº¦ã¨ããã£ããæ°ããªå¤æ°ã追å ã§ããã¨ããã«ããã¾ãã
ãªãªã¸ãã«ã®åè¡¡âç¹âã¯ãæ°ããªå¤æ° ï½ åæä¾¡æ ¼ã«å¯¾ããâç·âããããã¯æºè¶³åº¦ã«å¯¾ããâç·âã¨ãªãã¾ãã
ãã¦ãã ãã¶æã£ã¦åããè¨ãæ¹ã¨ãªãã¾ããããå
ã»ã©ã®åç´ãªä¾ã
ãã L(T,U) = T(t) - U(t) = t^2 - 2 t
ã«ç«ã¡è¿ãã¨ãããã«ãã£ãã®ã¯å¤æ° t ã®ã¿ã§ããã®ã¾ã¾ã§çµãã£ã¦ãã¦ã¯ä½ã®ããããã¿ãæãããã¾ããã
夿° t ã®ä¸ã«ãæ°ããªå¤æ°ãä½ç½® q ã¨ãé度 q' ããªã¼ãã¼ã©ããããã¦åãã¦ã
ãã»ä½ç½® q ã«å¯¾ããåè¡¡ã®ç·
ãã»é度 q' ã«å¯¾ããåè¡¡ã®ç·
ãæããããã§ãã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ç価ãçºæ®ãããã®ã§ãã
â» è§£æåå¦ã§ã¯ãç©ä½ã®ä½ç½®ã x ã¨æ¸ããã« q ã¨æ¸ããã¨ãå¤ãã§ãã
â» x ãããããç´äº¤åº§æ¨ã表ãã®ã«å¯¾ããq ã¯åºãä¸è¬çãªåº§æ¨ã¨ããæ°æã¡ãè¾¼ãããã¦ãã¾ãã
æ¹ãã¦ãå
ã»ã©çãã¦ããâå¾®åâã®è¦ç´ ã«ç®ãåãã¾ãããã
ã©ã°ã©ã³ã¸ã¢ã³ï¼¬ããæ¬æ¥ã®å§¿ã
ãã L( q(t), q'(t) )
ã«æ»ãã¾ãã
ã¤ã¾ãã©ã°ã©ã³ã¸ã¢ã³ L ã¨ã¯ãä½ç½® q ã¨ãé度 q' ã®é¢æ°ã§ãã
â» æ¬æ¥ã§ããã°ãããã«æå» t ãå«ããã¹ããªã®ã§ãããç°¡åã®ããçç¥ãã¾ãã
åé ã«æ²ããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®éª¨æ ¼ã®ã¿ãæãåºãã¨ããããªãã¾ãã
ãâL/âq = d/dt{ âL/âq' }
ã©ã°ã©ã³ã¸ã¢ã³ L ããã¨ãã«ã®ã¼ã³ã¹ããã¨èªã¿æ¿ããã¨ããã®å¼ã¯ã
ãã¨ãã«ã®ã¼ã³ã¹ã L ã«å¯¾ãããä½ç½® q ã®å¯ä¸ã¨ãé度 q' ã®å¯ä¸ãåè¡¡ãã¦ãããã¨èªããã¨ãã§ãã¾ãã
ãããã¯ããéçãªåã¨åçãªåãåè¡¡ãã¦ãããã¨èªããã¨ãã§ããã§ãããã
ï¼ããã¦ãä½ç½®ã¨é度ãåè¡¡ãã¦ããã¨ããã¨ãã«ã®ã¼ã³ã¹ãã¯å±æçã«æå°ã¨ãªããã¨ããã®ããã®å¼ã®ä½¿ãæ¹ã§ããï¼
ãã ãå¼ãè¦ãã¨ãé度 q' ã®ããå³è¾ºã«ã¯ d/dt ã¨ããæä½ãæ½ããã¦ãã¾ãã
ãã® d/dt ããã©ãè§£éãã¹ãã§ããããã
æãéªéã«ãã¦ç°¡åãªè§£éã¯âç´åâã§ãã
é度 q' ã¨ããè¨å·ããã©ã¤ããããæµã®æ¸ãæ¹ dq/dt ã«ç´ãã¦ã¿ã¾ãããã
ï¼ã©ã¡ãã®æ¸ãæ¹ã§ããt ã§å¾®åãããã¨ããæå³ã¯åãã§ããï¼
ããã¦ãd/dt ã¨ããè¨å·ã¯âç´åâã§ãããã¨ãããªãã

ãã®ããã«ãã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã¨ã¯ï¼å°ãªãã¨ãå¼·å¼ãªåé¢ã®ä¸ã§ã¯ï¼æ¥µãã¦ã¢ã¿ãªãã¨ã®ãã¨ã主張ãã¦ããã®ã§ãã
âç´åâããããå°ãã¾ã£ã¨ããªè§£éã¯ããå使éå½ãããã¨ããæä½ã®å¿
ç¶æ§ã§ãã
d/dt ã«ã¯ãå使éå½ãããã¨ããæå³ãããã¾ãã
ä»®ã«ãæéããã£ããæµãã¦ããã¹ãã¼ã¢ã¼ã·ã§ã³ã®ä¸çããã£ãã¨ãã¾ãããã
ã¹ãã¼ã¢ã¼ã·ã§ã³ã®ä¸çã§ã¯ãæéã¯ãã£ããã«ãªãã¾ãããéåã®è»è·¡ã¯åãå½¢ã®ã¾ã¾ã§ãã
æéããã£ããã«ãªã£ã¦ããä½ç½® q ã®å¯ä¸ï¼ä½ç½® q ã«ä¾åããéçãªåï¼ã¯å¤ããã¾ããã
䏿¹ãæéããã£ããã«ãªã£ãã¨ããããé度 q' ã®å¯ä¸ï¼é度 q' ã«ä¾åããåçãªåï¼ã¯å°ãããªãã¯ãã§ãã
ããã§ãè»è·¡ãåãã ã¨ãããã¨ã¯ãé度 q' ã®å¯ä¸ããæéã®æµããéãã«åããã¦èª¿æ´ããªããã°ãªãã¾ããã
ã©ã®ããã«èª¿æ´ãããã¨ããã¨ãæéã®æµããéãã§å²ã£ã¦ãããã¤ã¾ããå使éå½ãããã®éã«æç®ãã¾ãã
ãããé度 q' ã®å¯ä¸ {âL/âq'} ã« d/dt ã¨ããæä½ãæ½ãçç±ã§ãã
ããæéããã£ããæµããä¸çãèªããããªãã®ãªããæéã®åä½ãå¤ãã¦è¨ç®ãããã¨ãèãã¦ã¿ã¦ãã ããã
éåã®è»è·¡ã¯ãç§åä½ã§è¨ç®ãããã¨ããååä½ã§è¨ç®ãããã¨ãä¸è´ããã¯ãã§ãã
ã«ãããããããåã« {âL/âq'} ãè¨ç®ããã¨ãç§éã®æ¹ãåéã® 60åã¨ãªããéçãªå âL/âq ã¨é£ãåããã¨ããªããªã£ã¦ãã¾ãã¾ãã
ï¼éçãªåã®æ¹ã«ã¯ãé½ã«å使éãå
¥ã£ã¦ããªããã¨ã«æ³¨æãï¼
æ¹ç¨å¼ãæç«ããããã«ã¯ï¼ã¤ã¾ãæ¹ç¨å¼ã®ä¸¡è¾ºã®åä½ãåãããã«ã¯ï¼ã{âL/âq'} ãæéã®åä½ã§å²ãå¿
è¦ãããã¾ãã
â» ãã®æéåä½ãæããæä½ d/dt ã¨ãããããé度ã¨ã¯ä½ç½®ã®æéå¤åã§ãã£ã dq/dt ã¨ã¯ã表è¨ã®ä¸ã§ã¯âç´åâã®ããã«æã¡æ¶ãåãã¾ãã
以ä¸ã®ãè³ç«ã¦ãæ´ã£ãã¨ããã§ãã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã®ã¤ã¡ã¼ã¸åã試ã¿ã¾ãããã

ã¾ãæ¨ªè»¸ã«æå»ï½ã縦軸ã«ç©ä½ã®ä½ç½®ï½ãã¨ããéåã®è»è·¡ãæãã¾ãã
ããã«é«ãã®è»¸ï¼¬ã追è¨ããï¼æ¬¡å
ã®ã°ã©ããå½¢ä½ãã¾ãã
Lã¯ç©ä½ã®ä½ç½®ï½ã«ä¾åããã®ã§ããããï½ÃL平é¢ä¸ã«æãã¾ãã
ï½ÃL平é¢ä¸ã«æãããè»è·¡ã®å¾ãã¯ãâL/âq ãæå³ãã¾ãã
ããã¾ã§ã¯éçãªåã®è©±ã§ãå³ã®ä¸ã§ã¯éè²ã§æããã¦ãã¾ãã
次ã«ãéåã®è»è·¡ãå¾®åããé度ï½âã®ç·ãï½Ãï½å¹³é¢ä¸ã«éãã¦æãã¾ãã
é度ï½âã®è»¸ã¯ãä½ç½®ï½ã®è»¸ã¨ã¹ã±ã¼ã«ï¼åä½ç®çãï¼ãç°ãªã£ã¦ãããããæ¹ãã¦å³ã®å³å´ã«ï½â軸ãä»ãå ãã¾ããã
ã¤ã¾ãå¾®åããï½âã®ç·ã¯ãå³å´ã®ï½âè»¸ã®æ¹ãç¨ããï½Ãï½âå¹³é¢ä¸ã«ãããã®ã¨èãã¾ãã
ï¼å³ã®ä¸ã§ãï½Ãï½å¹³é¢ã¨ï½Ãï½âå¹³é¢ã¯éãã¦æããã¦ãã¾ããï¼
Lã¯ç©ä½ã®é度ï½âã«ãä¾åããã®ã§ããããæãå¹³é¢ãå¿
è¦ã§ãã
å³ã®ä¸ã«ãé度ï½â軸ã«ç´è¡ããå½¢ã§ãé«ã軸 d/dt(L) ãä»ãå ãã¾ãããã
ï¼å³ã®ä¸ã§ãå³ç«¯ã§åç´ã«ç«ã£ã¦ããå¹³é¢ãï½âÃdt/d(L)å¹³é¢ã¨ãªãã¾ããï¼
ãã® ï½âÃdt/d(L)å¹³é¢ä¸ã«æãããè»è·¡ã®å¾ãã¯ãd/dt(âL/âq') ãæå³ãã¾ãã
ããã¾ã§ãåçãªåã®è©±ã§ãå³ã®ä¸ã§ã¯èµ¤è²ã§æããã¦ãã¾ãã
ãããã¦æããï¼æ¬¡å
ã®ã°ã©ãããæ¨ªæ¹åããçºãã¦ã¿ã¾ãããã
横軸ã«ï½ã¨ï½âã®ãªã¼ãã¼ã©ããã縦軸ã«ï¼¬ã¨dt/d(L)ããªã¼ãã¼ã©ããããã
ï¼æã®éã¨èµ¤ã®éãªã£ãã°ã©ããè¦ãããã¨ã«ãªãã¾ãã

éãã°ã©ãã®ä¸ã«ã¯ãLã«å¯¾ããä½ç½® q ã®å¯ä¸ï¼ä½ç½® q ã«ä¾åããéçãªåï¼ãæããã¦ãã¾ãã
赤ãã°ã©ãã®ä¸ã«ã¯ãLã«å¯¾ããé度 q' ã®å¯ä¸ï¼é度 q' ã«ä¾åããåçãªåï¼ãæããã¦ãã¾ãã
ãã®ã¨ããLã屿çã«æå°ã¨ããã®ã¯ãï¼ã¤ã®åã®åè¡¡ç¹ã¨ãªãã¾ãã
éã«ããã®åè¡¡ç¹ãè¨ç®ããªãã辿ã£ã¦ãããã¨ã§ããã¨ã®éåã®è»è·¡ãåç¾ã§ãã¾ãã
ããã¦ãåè¡¡ç¹ã表ãå¼ã¨ã¯ï¼éçãªåï¼ï¼ï¼åçãªåï¼ã¨ããå½¢ãã¨ããè¨å·ã§æ¸ãã°
ãâL/âq = d/dt{ âL/âq' }
ãããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã§ãã
ã* ã¾ã¨ã *
ã»å¾®åã¨ãããã¼ã«ããâå¾ãï¼ï¼âã§ã¯ãªããâï¼ã¤ã®å¢åããã©ã³ã¹ãã¨ã£ã¦æã¡æ¶ãåã£ãåè¡¡âã§ããã¨æããã
ã»ã©ã°ã©ã³ã¸ã¢ã³ï¼¬ãããã¨ãã«ã®ã¼ã³ã¹ããã¨èªã¿æ¿ããã
ã»ï¼ã¤ã®å¢åãã
ãã(1) ã¨ãã«ã®ã¼ã³ã¹ãLã«å¯¾ããä½ç½® q ã®å¯ä¸ï¼ä½ç½® q ã«ä¾åããéçãªåï¼
ãã(2) ã¨ãã«ã®ã¼ã³ã¹ãLã«å¯¾ããé度 q' ã®å¯ä¸ï¼é度 q' ã«ä¾åããåçãªåï¼
ãã«å¯¾å¿ãããã
ã»(1) 㨠(2) ã¯åãå俵ï¼åº§æ¨ç³»ï¼ã®ä¸ã«ã¯ä¹ããªãã
ããªããªããéçãªåãå使éãå«ã¾ãªãã®ã«å¯¾ããåçãªåã¯å使éãå«ãããã§ããã
ãããã§ãåçãªåã®æ¹ã« d/dt ã¨ããæä½ãå ããåãå俵ã«ä¹ããã
ã»ãããã¦ã§ããåè¡¡ã®å¼ããã©ã°ã©ã³ã¸ã¥æ¹ç¨å¼ã ã
ããâL/âq = d/dt{ âL/âq' }
æå¾ã«ã以ä¸ã®ãããªã¤ã¡ã¼ã¸è§£éã¯åé ã«ãè¿°ã¹ãéããã©ã°ã©ã³ã¸ã¥ããã®ç²¾ç¥ããããã°éªéãªã®ã§ãã£ã¦ã
ããããæç§æ¸æµã®ã代æ°çãªæä½ã®ã¿ãã«ãã証æãæ£éã§ããã¨ããã¦ãã¾ãã
ããããªãã代æ°çæä½ã¯æ£ãããã¤ã¡ã¼ã¸è§£éã¯åãå
¥ããããã®ã§ããããã
天æã©ã°ã©ã³ã¸ã¥ããã¨ã¦äººã®åã§ããããããã誰ãããæç¢ºãªã¤ã¡ã¼ã¸ãæ±ãã¦ããã¯ãã§ãã
ãã®ã¤ã¡ã¼ã¸ãå
¬éããªãã£ãçç±ã®ï¼ã¤ã¯ãé説çã§ããã
ããã¤ã¡ã¼ã¸ã¯æ£ãã人ã«ä¼ãããªãããã
ã§ã¯ãªããã¨æãã®ã§ãã
塿ã§ããç§ãã©ã°ã©ã³ã¸ã¢ã³ã®å³ãæãã¤ã¤æµ®ããã ã®ã¯ã
ãããã®å³ã®æå³ã¯ããªããªã人ã«ã¯ä¼ãããªãã ãããªã»ã»ã»ã
ã¨ããæãã§ããã
å³ã®èªã¿æãæªãã¨ããæå³ã§ã¯ãªãããã®å³ã§ã¯æå³ãæãåãã¦ããªãã表ç¾åãè¶³ããªãã¨ããæå³ã§ãã
ããå°ãå
·ä½çã«è¨ãã¨ãâæéã®æµããæããâã¨ãã£ãæè¦ãå³ã«ãããã¨ãã§ãã¾ããã
ãã¡ãããèªç¶è¨èªã§è¡¨ããã¨ãé£ããã
ã¤ã³ã¿ã¼ã©ã¯ãã£ããªã¢ãã¡ã¼ã·ã§ã³ãdtããã¨ã¼ã³ã¨å¼ãå»¶ã°ãã¨ãããã«ä¼´ã£ã¦ {âL/âq'} ãå¤åãããããªãªãã¸ã§ã¯ããä½ãã°ãããå°ã表ç¾ã§ããããããã¾ããã
ããã§ãå®å
¨ã§ã¯ããã¾ããã
åæãªæ³åã§ããã天æã©ã°ã©ã³ã¸ã¥ããã¯ãèªåã®æã¤ã¤ã¡ã¼ã¸ã彿ã®äººãã¡ã«ã¯ã¾ãä¼ãããªãã¨æã£ãã®ã§ã¯ãªãã§ããããã
ãã®ä¸ã§ãé©ãã¹ãæ¹æ³ ï½ ä»£æ°çæä½ã®ã¿ã«ãã£ã¦è¡¨ç¾ããæ¹æ³ãéæããã®ã ã¨æãã®ã§ãã
ããããã¾ãã«ããããã£ããã®ã ãããå¾ä¸ã®äººããã£ããã代æ°çãªæä½ã®ã¿ãçå®ãã§ããã¨ä¿¡ãè¾¼ãã§ãã¾ã£ãã
確ãã«ã代æ°çãªè¨å·æä½ã¯ã¤ã¡ã¼ã¸ããã誤解ãå°ãªãããã³ãã¼ããã®ãé£ããã¯ããã¾ããã
ãããããã ã³ãã¼ããã ãã§ã©ã°ã©ã³ã¸ã¥ããã®æå³ãä¼ãã£ãã®ãã¨ããã¨ãããã«ã¯ä¾ç¶ã大ããªã®ã£ããããããã®ã¨æãã®ã§ãã
代æ°çæä½ã«ãã説æã¯ã以ä¸ãåç
§ã
* ã©ã°ã©ã³ã¸ã¢ã³ã«æå³ã¯ç¡ã >> d:id:rikunora:20090327