はてなキーワード: 複素数体とは
ただし以下では、ヒルベルト空間を物理空間と見なす素朴な解釈を禁止し、より高次の数学的構造として扱う。
この時点で、量子系は 単なる線形代数ではなく、圏としての性質が主役になる。
これが後に分離できない系(エンタングルメント)の直接的原因になる。
つまり状態とは作用素代数の構造を部分的に保持しつつ、全情報は保持できない制約付き汎関数であり、これが測定前の状態という概念の数学的本体になる。
観測は波束収縮ではなく、全体の作用素代数から可換部分代数への冪等射(自己合成しても変わらない射)として定義される。
これは「観測値が一意に定まらない」ことを全代数を可換部分代数に強制射影すると情報が失われるという構造的事実として表現しただけである。
量子干渉とは、状態に対して複数の可換部分代数が存在する。それぞれの部分代数に制限したときの汎関数が整合的でない。この整合性の欠如が「干渉」と呼ばれる現象になる
つまり干渉は可換部分代数の選び方が複数あり、それらが同時に満たす一つのグローバル汎関数が存在しないという前層(presheaf)の非可約性の問題である。
系 A と B の複合系が与えられるとき、通常はテンソル積によって分離できるはずだが、量子系では一般に失敗する。
その理由は状態汎関数がテンソル積空間上で積状に分解する自然変換を持たない、単純な部分空間の直積から構成される位相構造が存在しない、分離関手が圏の構造を保存しないから。
したがってエンタングルメントとはテンソル積空間の構造が、2つの部分系の圏論的生成子に分解できないことに過ぎない。
抽象化すると、時間発展は全作用素代数の自己同型の族、ただし逆が常に存在するとは限らないため、一般には半群。観測が入ると逆方向の自己同型が消滅する。これが「不可逆性」の正体である。
つまり時間とは、自己同型の完全群構造が壊れ、半群に退化した結果発生するパラメータにすぎない。
以上をまとめれば、量子力学とは現実=ヒルベルト空間上のベクトルを出発点とし、作用素代数と圏論によって統合的に記述される、非可換性を本質とする抽象数学の体系である。
1. 量子情報の基本単位: 量子情報は、情報の最小単位である量子ビット(キュービット)から構成される。
2. キュービットの実現: 量子ビットは、重ね合わせや量子もつれといった量子力学固有の現象を示す量子系の状態により実現される。
3. 量子状態の記述: 量子系の状態は、状態ベクトルという数学的対象で表現される。これらの状態ベクトルは、量子系のあらゆる可能な状態を重ね合わせたものを定量的に記述する手段である。
4. ヒルベルト空間の構造: 状態ベクトルは、複素数体上の完全内積空間であるヒルベルト空間の元として定義される。ここでの「完全性」とは、収束列が必ず空間内の元に収束するという性質を意味する。
5. 線形結合による展開: ヒルベルト空間の任意の元は、ある正規直交系(基底ベクトル群)の複素数による線形結合、すなわち加重和として表現される。これにより、量子状態の重ね合わせが数学的に実現される。
6. 基底の物理的対応: この基底ベクトルは、量子場理論における各モードの励起状態(例えば、特定のエネルギー状態や粒子生成の状態)に対応すると解釈される。すなわち、基底自体は場の具体的な励起状態の数学的表現である。
7. 量子場の構成: 量子場は、基本粒子の生成や消滅を記述するための場であり、場の各励起状態が個々の粒子として現れる。これにより、量子系の背後にある物理現象が説明される。
8. 時空との関係: 量子場は、背景となる時空上に定義され、その振る舞いは時空の幾何学や局所的な相互作用規則に従う。時空は単なる固定の舞台ではなく、場合によっては場の性質に影響を与える要因ともなる。
9. 統一理論への展開: さらに、量子場と時空の相互作用は、重力を含む統一理論(たとえば超弦理論)の枠組みで考察される。ここでは、時空の微細構造や場の振る舞いが、より根源的な1次元の弦(超弦)の動的性質に起因していると考えられている。
10. 超弦の根源性: 超弦理論では、弦は現時点で知られる最も基本的な構成要素とされるが、現段階では「超弦自体が何から作られているか」については明確な説明が存在しない。つまり、超弦はさらなる下位構造を持つのか、またはそれ自体が最終的な基本実在なのかは未解明である。
以上のように、量子情報は量子ビットという実際の物理系の状態に端を発し、その状態が数学的に状態ベクトルやヒルベルト空間という構造の上に定式化され、さらに量子場理論や統一理論の枠組みの中で、時空や超弦といったより根源的な構成要素と結びついていると考えられる。
0.999…が1と等しい事がわからん中学生がいる、っていう増田のエントリ[1]があって、
それに対してわっと氏が「等しいのは公理だから」って返答[2]している。
[1] http://anond.hatelabo.jp/20161024040352
[2] http://watto.hatenablog.com/entry/2016/10/25/133000
ちなみに私は[1]の増田とは別人。
わっと氏の主張のどこが間違っているか述べる前に、
じゃぁ、0.999…=1となる本当の理由は何か、というのを先に書いておく。
そもそもなんとなくごまかして「0.999…」と書くことで9が無限に続いている事を表現しているが、
実際には人間の有限の寿命で無限個の数字を書けるわけもない(ヒルベルトの「有限の立場」)。
なんで、実際には有限個数であるn個の9を書いて、そのnをどんどん大きくしているのである。
で、nを大きくするたびに、0.999…が1に近づくというのが、「0.999…=1」の正しい数学的意味である。
高校数学をわかってる人向けに書くと、ようするにnを無限大に飛ばしたときの極限を考えているわけ。
で、わっと氏の何が間違っているのか。
おめー、0.999…=1が実数体の公理だってんなら、有理数体や複素数体の上では「0.999…=1」は
成り立たないってのか!?
当然そんなわけない。
つまり実数体の公理の中でもっとも重要な公理であるデデキントの切断公理が満たされないケース(有理数体)や
順序の公理が満たされないケース(複素数体)でも「0.999…=1」は成り立っているわけで、
「0.999…=1は実数体の公理」という主張はおかしい(注)。
じゃぁ何が重要なのか。
答えは実数体の「距離構造」である(更に弱く「位相構造」でも良い)。
先に極限の話をしたとき、0.999…の桁数nを大きくすると、1に「近づく」って述べた。
「近づく」ってのは「距離が小さくなる」ってことなんで、距離が関係しているわけだ。
わっと氏が触れているε-N0式の極限の定義でも、
0.999…は1に近づくとは限らない。
d(x,y) = 0 if x=y
d(x,y) = 1 if x≠y
0.999…は1に収束しない。
(注)もちろん、実数に関する性質を導くには必ず実数の公理を使うわけだから、
そういう意味では「0.999…=1」の証明に実数の公理を使うことにはなるんだけど、
そんなこと言い出したら「πは超越数」とか「5次方程式は解の公式を持たない」とか
実数に関する全ての定理は実数の公理を使っていることになるでしょ。
★追記
わっと氏の新しい記事を見て、わっと氏が何を勘違いしているのかわかった。
例えば
0.123456789101112131415....
という小数を考えたとき、この小数の桁数を無限に飛ばした極限の
実数(チャンパーノウン定数)が存在する事を示すには切断公理が必要となる。
しかし0.999...の場合は収束先の実数である1が存在することは
新記事の「これはデデキントを遠目で見てます」という記述を見る限り、
わっと氏は無限絡みで実数直線を2つにぶった切るときは常に切断公理が
必要になると思っているようだが、これは正しくない。
上述したようにこのケースはデデキント切断公理は必要ではないので。
デデキント切断公理は「実数直線を2つにぶった切るとどちらかに必ず端点が