2025-11-16

抽象数学とか量子力学とか

まず量子力学の基礎的存在論は次である

現実とは、ヒルベルト空間上のベクトルである

ただし以下では、ヒルベルト空間物理空間と見なす素朴な解釈禁止し、より高次の数学構造として扱う。

1. 対象Object)としての量子系

ヒルベルト空間母体とする対称モノイダル圏の対象

量子系は、次の要素を持つ抽象構造として定義される。

この時点で、量子系は 単なる線形代数ではなく、圏としての性質が主役になる。

特に

これが後に分離できない系(エンタングルメント)の直接的原因になる。

2. 状態State)の抽象

自己同型の可換性が制限された線型汎関数

状態は通常ベクトルで表すが、それは低階の記述である

抽象化すると状態とは、

まり状態とは作用素代数構造部分的に保持しつつ、全情報は保持できない制約付き汎関数であり、これが測定前の状態という概念数学本体になる。

3. 観測(Measurement)

部分代数への射影としての冪等射

観測は波束収縮ではなく、全体の作用素代数から可換部分代数への冪等射(自己合成しても変わらない射)として定義される。

これは「観測値が一意に定まらない」ことを全代数を可換部分代数強制射影すると情報が失われるという構造事実として表現しただけである

観測問題は射影が可逆でないことから生じる。

4. 干渉

可換部分代数選択によって生成される前層の非整合性

量子干渉とは、状態に対して複数の可換部分代数存在する。それぞれの部分代数制限したとき汎関数整合的でない。この整合性の欠如が「干渉」と呼ばれる現象になる

まり干渉は可換部分代数の選び方が複数あり、それらが同時に満たす一つのグローバル汎関数存在しないという前層(presheaf)の非可約性の問題である

5. エンタングルメント

テンソル積分可能性の欠如(分離関手の不完全性)

系 A と B の複合系が与えられるとき、通常はテンソル積によって分離できるはずだが、量子系では一般に失敗する。

その理由状態汎関数テンソル空間上で積状に分解する自然変換を持たない、単純な部分空間直積から構成される位相構造存在しない、分離関手が圏の構造を保存しないから。

したがってエンタングルメントとはテンソル空間構造が、2つの部分系の圏論的生成子に分解できないことに過ぎない。

6. 時間発展

作用素代数自己同型半群(逆写像非対称)

抽象化すると、時間発展は全作用素代数自己同型の族、ただし逆が常に存在するとは限らないため、一般には半群観測が入ると逆方向の自己同型が消滅する。これが「不可逆性」の正体である

まり時間とは、自己同型の完全群構造が壊れ、半群に退化した結果発生するパラメータにすぎない。

7. 量子力学全体像

量子力学は、以下の高次構造組合せで理解できる。

以上をまとめれば、量子力学とは現実ヒルベルト空間上のベクトルを出発点とし、作用素代数圏論によって統合的に記述される、非可換性を本質とする抽象数学の体系である

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん