éåã¯æ³¢ã§çè§£ã§ãã
éååå¦ã¨ã¯ãã¨ã¦ã¤ããªãé£ããå¦åã®ä»£è¡¨æ ¼ã§ãã
ç»å ´ããæ°å¦ã®é£ããããããã¨ãªããããã以åã«ãèå¿ã®ãéåãã®ç´ æ§ãã¾ãã§æ´ããªãã
éåã«ã¤ãã¦ãå
·ä½çãªã¤ã¡ã¼ã¸ãæãæããã¨ã極ãã¦å°é£ãªã®ã§ãã
ç§ãä½åãã®æ¬ãçºãã¦ã¯ãèªåãªãã«ã¤ã¡ã¼ã¸ãæãåªåããã¦ã¿ãã®ã§ãããçµå±ã®ã¨ããããããã¾ãã(^^;)
éåã¨ã¯ããã¯ã常èã§çè§£ã§ãããã®ã§ã¯ç¡ãã®ã ã¨ã»ã»ã»
ã¨ãããããã®çè§£ä¸è½ã¨ããããã¦ããéåã«ã¤ãã¦ã大åã®çåãã¯ãªã¢ã¼ã«ããã³ã³ãã³ãããã£ãã®ã§ãã
* å®®æ²¢å¼æ -- æé
>> http://www7.ocn.ne.jp/~miyazaw1/papers/papers.htm
ããã«ããã³ã³ãã³ãã«ã¯ãéååå¦ã®è¬(?!)ãè§£ãé大ãªãã³ããå«ã¾ãã¦ãããã®ã¨æãã¾ãã
人ã«ãã好ã¿ãåãããããããã¾ããããå°ãªãã¨ãç§ã¯åãã£ãæ°ã«ãªãã¾ããã
以ä¸ãç§ãªãã«åãã£ããã¨ãã¾ã¨ãã¦ã¿ã¾ãã
ãã¤ã³ãã¯ï¼ã¤ã
ãï¼ï¼éåã¨ã¯çµå±ä½ãªã®ã
ãï¼ï¼ãªãé£ç¶ãªãã®ããéé£ç¶ãçããã®ã
ã«ã¤ãã¦ã§ãã
ï¼ï¼éåã¨ã¯çµå±ä½ãªã®ã
* èãæ¹ï¼¡ï¼
ãã¯ããªä¸çã®æ§æè¦ç´ ãéåã¯ãç²åã§ããããæ³¢ã§ãããã
ï¼åãï¼åã¨æ°ããããæ§è³ªã¯ç²åã§ãããåæãå¹²æ¸ãå¼ãèµ·ããæ§è³ªã¯æ³¢ã§ããã
é»åããå ããç²åçãªæ§è³ªã¨æ³¢åçãªæ§è³ªã®ä¸¡æ¹ãæã¤ã
ãã¯ããªä¸çã®å¸¸èã§ã¯èããããªãããã®å¥å¦ãªæ§è³ªã®ãã¨ããç²åã¨æ³¢åã®äºéæ§ãã¨ããã
* èãæ¹ï¼¢ï¼
ãã¯ããªä¸çã®æ§æè¦ç´ ãéåã¯ãæ³¢ã§ããã
ãã ãè¤ç´ æ°ã®æ³¢ãªã®ã§ããã
è¤ç´ æ°ããç©ççã«æå³ã®ããå¤ã宿°ãåãã ãéç¨ã«ããã¦ã
è¤ç´ æ°ã®æ³¢ã¯ï¼åãï¼åã¨æ°ããããæ§è³ªã帯ã³ã¦ããã
ãã®ç²åã¨ãã¦ã®æ§è³ªã帯ã³ããã¨ããéååãã¨ããã
ãã®ï¼ã¤ã®èãæ¹ï¼¡ï¼ï¼¢ã®ãã¡ãåãããããã®ã¯ã©ã¡ãã§ããããï¼
ãã»ã©ã®ã²ãããè
ã§ãªãéããï¼¢ãé¸ã¶ãã¨ã¨æãã¾ãã
ã ããããç²åã§ããããæ³¢ã§ãããããªã©ã¨ãã£ããã¯ã±ã®ããããçå±ã§ç´å¾ã§ãã¾ããã
ãã£ãã®ãã¨ãæ³¢ãã§ããã¾ãããããã£ã¡ã®æ¹ããã£ã¨ç°¡åã ã(ç¬)ã
ä½ãããããé»åã¯ç²åã§ããããæ³¢ã§ããããã¨ããè¨ãæ¹ãè¯ããªãã
ããã§ã¯ã©ã®ããã«æåãã¦ãã©ã®ããã«åãæ±ã£ããããã®ãè¦å½ãã¤ããªãã
é»åã¯ãæ³¢ã§ãããã¨ãã¦å ¥ã£ã¦ããã®ãããã
æ³¢ã¨ã¯å ´ã®æ¯åã§ãããé»åã¯å ´ã§è¨è¿°ãããã
å¾ã®æ®µéã§ãããå¡ã¨ãªã£ã¦ç²åã¨ãªãã®ã§ããï¼éååï¼
ããã-- æ°éåç©çå¦å ¥é ãã
ããã¾ã§ä¸è¬çã ã£ãæãæ¹ã¯ä¸é©å½ã§ãããé»åãæ³¢åå ´ã¨ãã¦æããã¹ãã§ãããã¨ãããã¨ã§ããã
ããããã»ã»ã»
äºéæ§ãªã©ã¨ããè¨èã¯ããã®æå³ãæ°å¦çã«å®ç¾©ããã¦ããã®ã§ãªãéããç§å¦ã§ä½¿ãã¹ãã§ã¯ãªãã
ããã-- é»åã¯è³ªç¹ãå ´ã ãã
ãæ³¢ãã¨ããã®ã¯ãå ´ã§è¨è¿°ã§ãããä½ç½®ã¨æå»ã®é¢æ°Ï(x,t)ã§è¡¨ããããã¨ããæå³ã§ãã
䏿¹ãç²åã¨ã¯ãæå»ï½ãç¬ç«å¤æ°ã¨ããä½ç½®ã¨å¼ã°ãã颿°ï½(t)ã§è¡¨ããããã®ãã§ãã
å®ã®ã¨ãããããã¨ãé»åã¯å ´ã§è¡¨ããã¨ãã質ç¹ã§è¡¨ããã¨ãã§ãã¾ãã
ããããå ´ã§è¡¨ããæ¹ãçè«ãç°¡åã§ã質ç¹ã§è¡¨ããæ¹ãçè«ãé£ããã
ããããæ³¢ããæ¨ãçç±ãªã®ã§ãã
é»åã¯éååãããå ´ã§ãããåãªãå ´ã§ãªãã®ã§è©±ãè¤éã«ãªãã
å¥ã®è¨ãæ¹ããããªãã°ãé»åã¯è³ªç¹ã§ãå ´ã§ãã©ã£ã¡ã§ãããã®ã§ããã
Dirac ã®å¤æçè«ã«ããã¨ä¸¡æ¹ã®è¡¨ãæ¹ã¯ãããã«ã¦ãã¿ãªã¼å¤æã§çµã°ãã¦ããã®ã§ãå 容ã¯åãã§ããã
ãããçè«å½¢å¼ã¯å ¨ãéãã
質ç¹ã§ããã«ã¯ãx(t) ã¯å®æ°ã§ã¯ãªãé坿代æ°(Dirac ã®è¨ãã¨ããã®q-æ°ï¼ã§ãªããã°ãªããªããããã¯ãé£ãããçè«ã§ããã
䏿¹å ´ãªãã°ãçµå±ã¯ç¬¬äºéååã§é坿éã¨ãªãã®ã ããä¸ä½åé¡ãããã¯é»åç·ã®ãããªä½å¯åº¦ã®å ´åã¯å¤å ¸å ´ã§ãããããªãã®ç¾è±¡ãæããçè§£ã§ããã
ããã-- é»åã¯è³ªç¹ãå ´ã ãã
å ´ã®å½¢å¼ãæ¨ãããã£ã¨æ·±ãçç±ãããã¾ãã
ããã¯ãå ´ã®å½¢å¼ã¯ç¸å¯¾æ§çè«ã«é©ããå½¢æ
ãã ããã§ãã
ç¸å¯¾è«ã§ã¯ä½ç½®ã¨æå»ãx, y, z, t ã®ï¼åã®å¤æ°ãåçã®è³æ ¼ã§å
¥ã£ã¦ãã¾ãã
ã ã¨ããã¨ãä½ç½®ã®é¢æ°ï½(t)ããããä½ç½®ã¨æå»ã®é¢æ°Ï(x,t)ã®æ¹ããç¸å¯¾è«ã¨é¦´æã¿ãè¯ãããã§ãã
å ´ã質ç¹ãã¨ããåé¡ã¯åè² ããã£ããããªãã®ã§ããã
æã ã®ç©çãç¸å¯¾æ§åçã«å¾ãã¨ãããã¨ã¯æ ¹æ¬çãªäºå®ã¨ãã¦åãå ¥ãã¦ããã
ç¸å¯¾æ§çè«ãå±éããã«ã¯å ´ã§ãªããã°ãªããªãã
ããã«ãã¹ã¦ã®ãã®ã¯å ´ã§ãããã¨ãããã¨ã«ãªãã
ããã-- å ´ã¨è³ªç¹ ãã
ããããªãããéåã¯æ³¢ã§ãããã¨è¨ãåã人ã¯ããã¾ã®ã¨ããå°æ°æ´¾ã§ãã
ããåºç社ããæç§æ¸ãå ¨é¢æ¹å®ããã®ã§ååç©çã®ç« ãæ¸ãã¨ããã®ã§ããã
å¼µãåã£ã¦ãé»åã¯æ³¢ã§ãã£ã¦ã» ã» ã» ã¨æ¸ããã¨ããç·¨éä¼è°ã§å対ããã¦ãã¾ã£ãã
ç¾å ´ã®å çæ¹ãããããªæãæ¹ã¯åºæ¥ãªãã
æé¨çã®æå°è¦é ã«ãé»åã®ï¼æ³¢ã¨ç²åã®ï¼äºéæ§ãæããã¨æ¸ãã¦ãããã¨ããã®ã§ããã
ããã-- é»åã¯è³ªç¹ãå ´ã ãã
幸ãæã
ã¯æé¨çã«å¾ã義çãç¡ãã®ã§ãé»åã¯æ³¢ã§ãã£ã¦ã» ã» ã»ã§ãæ§ããªãã§ãããã
ï¼ï¼ãªãé£ç¶ãªãã®ããéé£ç¶ãçããã®ã
ãã¦ãéåãæ³¢ã§ããã¨ããã¨ãé端ã«å°ã£ããã¨ã«ãªãã¾ãã
ããã¯ãæ³¢ã¨ããé£ç¶çï¼ã¢ããã°ï¼ãªãã®ãããã©ããã¦é¢æ£çï¼ãã¸ã¿ã«ï¼ãªæ§è³ªãçããããã¨ããåé¡ã§ãã
æããã«é»åã¯ï¼åãï¼åã¨æ°ããããç²åã§ããã誰ãé»å0.5åã¨ãã£ãå端ãªç¶æ
ãè¦ããã¨ãããã¾ããã
éã«è¨ãã°ããã®ã¢ããã°ãããã¸ã¿ã«ãçããä»çµã¿ãããéååå¦ã®ãã¢ãªã®ã§ãã
ãã¸ã¿ã«ãçããä»çµã¿ ã éååããåãã£ã¦ãã¾ãã°ãéååå¦å
¨ä½ã®è¦éããæ¥µãã¦æçã«ãªãã¾ãã
ã§ã¯ãéååãç¥ãããã«ã¯ãä½ã調ã¹ãã°è¯ãã®ã§ããããã
é»ç£å ´ã®éååã¯å®¹æã§ããã
é»ç£çããã¼ãªã¨å±éãã¦å ´ãèª¿åæ¯ååã®éå£ã¨ããããã第ï¼éååããã°ããã
å éåããåºçºãã¦å種ç²åã対称統è¨ã®åçãå°å ¥ããããã¯ããã«èªç¶ã§ããã
ç§ãåãã¦ç¬¬ï¼éååãããé»ç£å ´ã«ãã©ãçããã¨ãã
ãªãã»ã©æ³¢ãç²åã®äºéæ§ã¨ã¯ãã®ãã¨ã§ãã£ããã¨ç®ããé±ã®è½ã¡ãæãã§ãã£ãã
ããã-- é»åã¯è³ªç¹ãå ´ã ãã
çã¯ãã°ããé»ç£å ´ã®éååãã«ããã¾ãã
ä¸ã«æ¸ãã¦ããéããé»ç£å ´ã¨ããã®ã¯ãèª¿åæ¯ååã®éå£ãã
å¤å
¸çãªã¤ã¡ã¼ã¸ã ã¨ããã®å
ã«éãã®ã¤ããããã¨ã³ãã¨ã³ãããã®ãæ³åããã°è¯ãã§ãããã
é»ç£å ´ã¨ã¯ã空éãã³ã£ããè¦ãå°½ããããã¨ã³ãã¨ã³ã®ãã¨ã ã¨æ³åãã¦ã¿ãã
ãã¦ã¿ãã¨ãé»ç£å ´ã®éååãã¨ã¯çµå±ã®ã¨ãããï¼åã®èª¿åæ¯ååããã¸ã¿ã«åããä»çµã¿ã«éå
ãããã§ãããã
å¤å ¸é»ç£æ°å¦ãéååããã«ã¯æ¬¡ã®ããã«ããã
é»ç£å ´ãåºææ¯åã§å±éããã
å±éä¿æ°ã«å¯¾ããéåæ¹ç¨å¼ã¯åæ¯åã®ãã®ã§ãããçµå±é»ç£å ´ã¯èª¿åæ¯ååã®éå£ã¨ãããã¨ã«ãªãã
èª¿åæ¯ååãéååããã®ã¯éååå¦ã®ã¤ããã§ãããç¥ãå°½ãããã¦ããã
çµæã¨ãã¦èª¿åæ¯ååã®ã¨ãã«ã®ã¼ã¯çééã«éååããã¦ããã
ããã-- å ´ã¨è³ªç¹ ãã
ã¤ã¾ããéååå¦ã®ååãæç§æ¸ã®ä¸ãããèª¿åæ¯ååãã¨æ¸ãã¦ããç®æãå¼ã£å¼µãåºãã¦ãã¦ã
ãã®ï¼ç« ãéä¸çã«ãã¹ã¿ã¼ããã°ãéååå¦ã®ãã¢ãçªç ´ã§ããã¨ããããã§ãã
èª¿åæ¯ååã«ã¤ãã¦ã¯ãã¤ã³ã¿ã¼ãããä¸ã«ãåªããè¨äºãããããããã¾ãã
ãã®ä¸ã§ãç¹ã«èª¿åæ¯ååã ããéä¸çã«æ±ã£ã¦ããã以ä¸ã®è³æãåãä¸ãã¾ãã
* èª¿åæ¯ååã®éååå¦çåæ±ã
>> http://web.ias.tokushima-u.ac.jp/physics/theor/members/hioki-file/HO.pdf
ãã®è³æããã£ããèªãã°è¯ãããã§ãããããã§ã¯ãã¾ãã«ä¸è¦ªåãªã®ã§ã以ä¸ã«è¦ç¹ã ãããã¯ã¢ãããã¾ãã
éåçãªèª¿åæ¯ååã®éåã¯ã次ã®ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ã§è¡¨ããã¾ãã
ã-(h~^2/2m) (d^2/dx^2) u(x) + 1/2 m Ï^2 x^2 u(x) = ï¼¥ u(x)ããã-- è³æ(3)å¼
ãã®å¼èªä½ã¯ u(x) ã«ã¤ãã¦ã®å¾®åæ¹ç¨å¼ã§ãä¸è¦ããã¨ãããã¸ã¿ã«çãªæ§è³ªã¯ä½å¦ã«ãæã¡åããã¦ããªãããã«è¦ãã¾ãã
è³æã®ä¸ã§ã¯ãã·ã¥ã¬ãã£ã³ã¬ã¼æ¹ç¨å¼ã®è§£æ³ãã¨ããç« ã§ãï¼ãã¼ã¸ãï¼ãã¼ã¸ã«æ¸¡ã£ã¦ã¾ã¨ãã«è§£ãã¦ãã¾ããã
ã¨ããããããã¯ãã£é£ã°ãã¦(^^;)ãï¼ãã¼ã¸ç®ã®ãçææ¶æ»
æ¼ç®åã«ããè§£æ³ããè¦ã¦ã¿ã¾ãããã
ããã«ã¯å¤©ä¸ãçã«ãçææ¼ç®åã»æ¶æ»
æ¼ç®åã¨å¼ã°ããï¼ã¤ã®æ¼ç®åãα^ã¨Î±^â ãåºã¦ãã¾ããï¼è³æä¸ã®(15)å¼ã¨(16)å¼ï¼
ã©ããã¦ãããªãã®ãæãã¤ããã®ãï¼
ï¼ã¤ã®ã¢ã¤ãã¢ã¯ãå
ã«ãªã£ãã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ã®ããã«ããã¢ã³ã
ãH = p^2/2m + 1/2 mÏ^2 x^2
ããäºä¹ï¼äºä¹ãã¨ããå½¢ããã¦ãããèæ°ã使ãã°ä½ã¨ãå æ°åè§£ã§ãããã ãã¨ããã¨ããããæ¥ã¦ããã®ã ã¨æãã¾ãã
å®éãx ã p ãæ¼ç®åã§ã¯ãªããåãªã夿°ã ã¨è¦ãªãã¦ãã¦ãã¾ãã°ã
ãH = p^2/2m + 1/2 mÏ^2 x^2
ãã = (1/2m) { p^2 + (mÏx)^2 }
ãã = (1/2m) { mÏx - ip }{ mÏx + ip }
ãã = (mÏ^2/2) { x - ip/mÏ }{ x + ip/mÏ }
ãã = h~Ï â(mÏ/2h~){ x - ip/mÏ } â(mÏ/2h~){ x + ip/mÏ }
ãã = h~Ï Î±^â α^
ãããªé¢¨ã«å æ°åè§£ã§ãã¦ãα^ã¨Î±^â ã£ã½ãé
ãåºã¦ãã¾ãã
ããããx ã p ã¯å®ã¯åãªã夿°ã§ã¯ãªããæ¼ç®åã§ããã
ã[ x, p ] = xp - px = i h~
ã¨ããé¢ä¿ï¼äº¤æé¢ä¿ï¼ãããã¾ãã
ãã®äº¤æé¢ä¿ãèæ
®ã«å
¥ããã¨ãä¸ã®å æ°åè§£ã£ã½ãå¼ã¯ã¡ãã£ã¨ä¿®æ£ãå¿
è¦ã§ãå®éã«ã¯
ãH = h~Ï ( α^â α^ + 1/2 )
ãããªé¢¨ã«ãªãã¾ããï¼+ 1/2 ãä½è¨ã«å¢ãã¦ãã¾ãï¼
ã¨ã«ãããããªé¢¨ã«ã²ãããã ããα^ ã¨Î±^â ã使ã£ã¦ãå
ã®ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ãæ¸ãç´ãã°ããããªãã¾ãã
ãH u(x) = h~Ï ( α^â α^ + 1/2 ) u(x) = ï¼¥ u(x)
ããã¾ã§ãä½ããã£ãã®ãã¨ããã¨ããã¨ãã¨åºæ¬å¤æ° x 㨠p ã§æ¸ããã¦ããã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ãã
æ°ããªæ¼ç®å α^ ã¨Î±^â ã使ã£ã¦æ¸ãç´ãããã¨ãããã¨ã§ãã
å¼ã®ä¸ã§ã¯ x 㨠p ãã α^ ã¨Î±^â ãæ±ãããã¨ãã§ãã
é㫠α^ ã¨Î±^â ãã x 㨠p ãæ±ãããã¨ãã§ããã®ã§ãããã
α^ ã¨Î±^â ã®æ¹ç¨å¼ã¯ãx 㨠p ã®æ¹ç¨å¼ã¨ç価ãªå
容ãå«ãã§ããã¯ãã§ãã
ã§ã¯ããªãå
ã®æ¹ç¨å¼ããããã α^ã¨Î±^â ã§æ¸ãç´ããã®ãã
å®ã¯ãα^ã¨Î±^â ã®éã«ã¯ã以ä¸ã®ãããªäº¤æé¢ä¿ãæãç«ã£ã¦ãã¾ãã
ã[ α^, α^â ] = α^α^â - α^â α^ = 1ãã-- âå¼
ãã®ããã«ã·ã³ãã«ãªäº¤æé¢ä¿ãæãç«ã¤æ¼ç®åãã䏿ãå
·åã«æ¢ãå½ã¦ããã¨ããã®ã α^ã¨Î±^â ã®ããããªã®ã§ãã
ãã¦ãα^ ã¨Î±^â ã§æ¸ãç´ããã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ã®ä¸»è¦ãªé¨åã¯ããããªé¢¨ã«ãªã£ã¦ãã¾ãã
ãα^â α^ u(x) = e u(x)ãã-- â å¼
ãã®â
å¼ã¨ãå
ã®äº¤æé¢ä¿âå¼ãçµã¿åãããã¨ãçææ¶æ»
æ¼ç®åã®ãããããæ§è³ªãå°ããã¾ãã
è³æä¸ã®(18)å¼ãα^ u(x) ã«ãå·¦ãã α^â α^ ã¨ããæ¼ç®åãæãã¦ã¿ãã¨ã»ã»ã»
ãα^â α^ α^ u(x) = (α^ α^â - 1) α^ u(x) = α^ (α^â α^ - 1) u(x) = (e - 1) α^ u(x)
ããã§â
å¼ã¨ããã®(18)å¼ãæ¯ã¹ã¦ã¿ãã¨ãæ¼ç®åα^ã«ã¯ e ãï¼ã ãå°ããããåãããããã¨ããããã¾ãã
â
å¼ã® u(x) ã«ã{α^ u(x)} ã代å
¥ããã¨ã以ä¸ã®ãããª
ãα^â α^ {α^ u(x)} = (e - 1) {α^ u(x)}ãã-- â âå¼
e ãï¼ã ãå°ããããæ¹ç¨å¼ãå¾ããã¾ãã
ãã® â
âå¼ã§æãç«ã£ã¦ãã {α^ u(x)} 㨠(e - 1) ã®çµã¯ããã¨ãã¨ã®â
å¼ã®è§£ã®çµã®ï¼ã¤ã§ãã£ãããã§ãã
ã¤ã¾ããããâ
å¼ãæãç«ããã u(x) 㨠e ã®çµã¿åããããã£ããªãã
ãã®çµã«æ¼ç®åα^ãä½ç¨ããã {α^ u(x)} 㨠(e - 1) ãçã®çµã«ãªã£ã¦ãããã¨ãããããªã®ã§ãã
ã¾ããè³æä¸ã®(19)å¼ãα^â u(x) ã«ãå·¦ãã α^â α^ ã¨ããæ¼ç®åãæãã¦ã¿ãã¨ã»ã»ã»
ãα^â α^ α^â u(x) = α^â (α^â α^ + 1) u(x) = (e + 1) α^â u(x)
ããã§â
å¼ã¨ããã®(19)å¼ãæ¯ã¹ã¦ã¿ãã¨ãæ¼ç®åα^ã«ã¯ e ãï¼ã ã大ããããåãããããã¨ããããã¾ãã
ããâ
å¼ãæãç«ããã u(x) 㨠e ã®çµã¿åããããã£ããªãã
ãã®çµã«æ¼ç®åα^ãä½ç¨ããã {α^â u(x)} 㨠(e + 1) ãçã®çµã«ãªã£ã¦ããããã§ãã
ã¨ããã§ãe ã¨ã¯ä½ã§ãã£ããã¨å
ã®ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ã«æ»ã£ã¦ã¿ãã¨ãããã¯éåã®æã¤ã¨ãã«ã®ã¼ã®ãã¨ã§ããã
e ãï¼ã ã大ããããã¨ãå
ã®ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ã§ã¯ãã¨ãã«ã®ã¼ã h~Ï ã ã大ãããªãã¾ãã
å対㫠e ãï¼ã ãå°ããããã¨ãã¨ãã«ã®ã¼ã¯ h~Ï ã ãå°ãããªãã¾ãã
ç¶æ
u(x) ã«çææ¶æ»
æ¼ç®åãä½ç¨ãããã¨ãã¨ãã«ã®ã¼ã¯ h~Ï ã¹ãããã§å¢æ¸ããã»ã»ã»
ããããããéååãã§ãããä¸è¦é£ç¶ã«è¦ãã微忹ç¨å¼ãã颿£çãªè§£ãå¾ãããç§å¯ã ã£ãã®ã§ãï¼
以ä¸ãé£ç¶ãªãã®ããéé£ç¶ãçããåºæ¬çãªä»çµã¿ã§ãã
æ¹ãã¦è¦ç´ãã¨ãéååãæãç«ã¤ããã«æ¬ ãããªãæ¡ä»¶ã¯ãæ¼ç®åã®äº¤æé¢ä¿ãï¼ã§ã¯ãªããã¨ã
ã[ α^, α^â ] = α^α^â - α^â α^ = 1ãã-- âå¼
ãã®âå¼ã«ãããã¨ã«æ°ä»ãã§ãããã
ããã¾ã§ã®è°è«ã§ã¯ãã¨ãã«ã®ã¼ e ã±ï¼ã¹ãããã§å¢æ¸ããã¨ãããã¨ã¾ã§ããåããã¾ãããã
ããã«ã
ã»Î±^â α^ ãã¨ã«ãã¼ãæ¼ç®åã§ãããã¨ã«ãã¼ãæ¼ç®åã®åºæå¤ã¯å¿
ã宿°ã«ãªããã¨.
ã»æ³¢å颿° u(x) 㯠1 ã«è¦æ ¼åããã¦ãããã¨.
ãªã©ã®æ¡ä»¶ãããe 㯠0, 1, 2 ã»ã»ã»ã¨ãã£ãæ´æ°å¤ããåãå¾ãªããã¨ãå°ããã¾ãã
詳ããã¯ä»¥ä¸ã®ã³ã³ãã³ãã¸ã
* EMANã®ç©çå¦ -- çææ¼ç®åã¨æ¶æ»
æ¼ç®å
>> http://homepage2.nifty.com/eman/quantum/creat_op.html
* ç©çã®ãºã¼ã -- èª¿åæ¯åå
>> http://members3.jcom.home.ne.jp/nososnd/ryosi/creat.pdf
* 楽ããç©çãã¼ã -- åçå ´ã®éåè«(2)
>> http://kenzou.michikusa.jp/QFT/EQFChap2.pdf
以ä¸ã¯éåçãªèª¿åæ¯ååã®éåã§ããããã®ã¾ã¾ãé»ç£å ´ã®éååãã«é©ç¨ã§ãã¾ãã
é»ç£å ´ãéååãããã®ã ãããåããããªæ¹æ³ã§ãé»åå ´ããéååãã¦ãé»åããã§ããã®ã ããã»ã»ã»
ãã®èãæ¹ã¯ãåºæ¬çã«ã¯æ£è§£ã®ããã§ãã
ãã ããé»åå ´ã«ã¯é»ç£å ´ã¨ã¯éã£ãäºæ
ããã£ã¦ã
ãé»åå ´ã®éååã¯é»ç£å ´ã®ããã«æ»ããã«ã¯è¡ããªããã®ã ããã§ãããã
ãã®è¾ºã®ãã¨ã¯ãç§ã«ãããããããã®ã§ãå°æ¥ã®å®¿é¡ã¨ãã¾ãã
ã¾ã¨ã
ä½ãè¨ãããã£ãã®ãã¨ããã¨ãéååå¦ã¨ãããã®ã¯å ´ã§çµ±ä¸çã«çè§£ã§ããã¨ãããã¨ã§ãã
ããã¾ã§æ´å²çãªçµç·¯ãããç²å -> åå¨ç¢ºç ã¨ãã£ãè§£éãçºããã¦ããã®ã§ããã
æ¹ãã¦ç¾ä»£çãªè¦ç¹ããè¦ç´ãã°ãå ´ããå
¥ã£ãæ¹ãã·ã³ãã«ã§ããããã«æãã¾ãã
å°ãªãã¨ããç«ãååæ»ãã§ããããªã©ã¨ãã£ãåé¡ã§æ©ãå¿
è¦ãç¡ããªãã¾ãã
ä½ãåãããããã¨æãããã¯äººããããã§ãããç§ã¯ãéåã¯æ³¢ãããã¹ã¿ã¼ãã§è¯ãã®ã§ã¯ãªããã¨æãã®ã§ãã
éååå¦ã«è©³ããæ¹ããããã§ããããã
ç¶ãï¼ãã½ã³ã¨ãã§ã«ããªã³ã«ã¤ãã¦ã¾ã¨ãã¾ããã
* æ³¢ã¨ç²åãåãã§ããçç± >> [id:rikunora:20130728]