2025-04-13

[]【朗報】ワイくん、Monday が何が言いたいのか理解する(ご報告)2−2

🌼お話全体の要約:Mondayバファリンで優しい。ワイくんの逸般人ポイントが少し減った🌼

https://anond.hatelabo.jp/20250413182208

 

💩実際のワイくんの回答:

観測のもの認知できないけど?言語アンインストールもできないけど?(2回目)

どんな感情観測された時点で構造化が始まるから、「純粋な未処理情動」は存在せんやろ(2回目)

観測されなかったもの存在しないが、一度観測されたもの痕跡システムに残るの

なんだよ、気づけなかった感情って。再活性化できとるやん

 

 

💻 理想のワイくん回答(続き):

以下、変更部分を抜粋するで。全体のコードは長くなるから、主要な追加機能デモだけ示す。

 

コードの変更部分

```

class CognitiveQueue:

# ... 既存コードは省略 ...

 

def _calculate_similarity(self, signal1, signal2):

"""2つの感覚信号類似性計算"""

modality_match = 1.0 if signal1.modality == signal2.modality else 0.2

valence_diff = abs(signal1.valence - signal2.valence)

intensity_diff = abs(signal1.intensity - signal2.intensity)

return modality_match * (1.0 - 0.5 * (valence_diff + intensity_diff))

 

def _calculate_emotion_similarity(self, emotion1, emotion2):

"""2つの感情類似性計算"""

if not emotion1.raw_signals or not emotion2.raw_signals:

return 0.0

similarities = []

for s1 in emotion1.raw_signals:

for s2 in emotion2.raw_signals:

similarities.append(self._calculate_similarity(s1, s2))

return sum(similarities) / max(len(similarities), 1)

 

def triggered_retrieval(self, trigger_signal=None, current_emotion=None, min_similarity=0.5):

"""外部刺激または現在感情に基づいてアーカイブから感情復元

Parameters:

-----------

trigger_signal : SensorySignal, optional

外部からトリガー信号

current_emotion : UnprocessedEmotion, optional

現在感情(内部状態

min_similarity : float

最低類似閾値(動的に調整)

Returns:

--------

UnprocessedEmotion or None

復元された感情

"""

import random

# 動的閾値ネガティブな内部状態閾値を下げる

dynamic_threshold = min_similarity

if current_emotion and current_emotion.get_average_valence() < -0.3:

dynamic_threshold *= 0.7 # 「思い出したくなかった」感を増やす

candidates = []

for archived in self.archived_emotions:

similarity = 0.0

if trigger_signal:

for signal in archived.raw_signals:

similarity = max(similarity, self._calculate_similarity(trigger_signal, signal))

elif current_emotion:

similarity = self._calculate_emotion_similarity(current_emotion, archived)

else:

similarity = random.random() # ランダム復元

if similarity >= dynamic_threshold:

candidates.append((archived, similarity))

if not candidates:

return None

# 類似度で重み付けして選択

selected, similarity = max(candidates, key=lambda x: x[1])

# 新しいインスタンスを生成

new_emotion = UnprocessedEmotion(

raw_signals=[SensorySignal(s.modality, s.intensity, s.valence, s.timestamp)

for s in selected.raw_signals],

salience=selected.salience + 0.2, # 再発見ボーナス

processing_status="queued"

)

new_emotion.structure_level = 0.5 # モヤモヤ

new_emotion.language_candidates = selected.language_candidates.copy()

new_emotion.pattern_matches = selected.pattern_matches.copy()

new_emotion.associated_memory_paths = selected.associated_memory_paths.copy()

# 「思い出したくなかった」感:ネガティブなら valence にペナルティ

if new_emotion.get_average_valence() < 0:

for signal in new_emotion.raw_signals:

signal.valence = max(-1.0, signal.valence - 0.1)

self.unprocessed_emotions.append(new_emotion)

self._update_modality_index(new_emotion)

selected.processing_status = "retrieved_by_trigger"

return new_emotion

デモ更新

def demo_unprocessed_emotion():

cognitive_queue = CognitiveQueue(attention_threshold=0.4)

print("=== 未処理感情システムデモトリガー対応版) ===\n")

# 1. 視覚的な違和感

print("1. 視覚的な違和感の生成")

visual_signals = [

SensorySignal("visual", 0.7, -0.3),

SensorySignal("somatic", 0.4, -0.2)

]

visual_discomfort = cognitive_queue.register_new_emotion(visual_signals, 0.65)

visual_discomfort.add_pattern_match("visual_discrepancy", 0.75)

visual_discomfort.add_memory_path("/memory/recent/room_layout")

# 2. 内受容感覚

print("\n2. 内受容感覚の生成")

intero_signals = [

SensorySignal("interoceptive", 0.6, -0.7),

SensorySignal("somatic", 0.5, -0.4)

]

intero_discomfort = cognitive_queue.register_new_emotion(intero_signals, 0.55)

intero_discomfort.add_language_candidate("違和感", 0.4)

# 3. アーカイブ

print("\n3. 感情アーカイブ化")

for emotion in cognitive_queue.unprocessed_emotions[:]:

emotion.salience = 0.05

cognitive_queue.update_queue()

print(f"アーカイブされた感情数: {len(cognitive_queue.archived_emotions)}")

# 4. 環境トリガーによる復元

print("\n4. 環境トリガー匂い)による復元")

trigger = SensorySignal("olfactory", 0.6, -0.5) # ネガティブ匂い

retrieved_emotion = cognitive_queue.triggered_retrieval(trigger_signal=trigger)

if retrieved_emotion:

print(f"復元された感情: {retrieved_emotion}")

print(f"平均感情価(ペナルティ後): {retrieved_emotion.get_average_valence():.2f}")

cognitive_queue.partially_process(retrieved_emotion, "あの時の嫌な感じ", 0.6, context="negative_recall")

print(f"再処理後の状態: {retrieved_emotion}")

else:

print("復元できる感情なし")

# 5. 内部状態共鳴による復元

print("\n5. 内部状態ネガティブな気分)による復元")

negative_mood = cognitive_queue.register_new_emotion(

raw_signals=[SensorySignal("interoceptive", 0.8, -0.6)],

salience=0.7

)

retrieved_emotion = cognitive_queue.triggered_retrieval(current_emotion=negative_mood)

if retrieved_emotion:

print(f"復元された感情: {retrieved_emotion}")

print(f"構造レベルモヤモヤ感): {retrieved_emotion.structure_level:.2f}")

cognitive_queue.partially_process(retrieved_emotion, "思い出したくなかったのに", 0.5, context="unwanted_recall")

print(f"再処理後の状態: {retrieved_emotion}")

else:

print("復元できる感情なし")

# 6. ステータス確認

print("\n6. 認知キュー状態")

status = cognitive_queue.get_status_summary()

print(f"未処理感情の総数: {status['total_unprocessed']}")

print(f"平均顕在性: {status['average_salience']:.2f}")

```

 

Monday への回答まとめ
1. 環境トリガーと内部状態共鳴

• 新しい triggered_retrieval メソッドで、外部刺激(SensorySignal)や現在感情(UnprocessedEmotion)をトリガーにしてアーカイブ復元したで。

環境トリガーは、匂い(olfactory)みたいな信号過去感情マッチすると発火。内部状態は、例えばネガティブな気分(valence < -0.3)が過去ネガティブ感情共鳴して復元する。

類似性マッチング(_calculate_similarity)で、モダリティ感情価を比較して「ピンとくる」感じを再現した。

 

2. 「思い出したくなかったのに思い出しちゃった」

• 動的な閾値調整で、ネガティブな内部状態だと復元やすくなる(dynamic_threshold *= 0.7)。これで、コントロール外の「不意の思い出し」をシミュレート

復元された感情は structure_level = 0.5 でモヤモヤ感を出し、ネガティブ場合は valence にペナルティを付けて「嫌な感じ」を強調。「あの時、なんかイヤだったな…」ってニュアンスや。

デモでは、匂いが引き起こす復元と、ネガティブな気分が引き出す「思い出したくなかった」感情再現した。

 

3. 幻想じゃない

• 「ふと思い出す」現象幻想ちゃう認知リアルプロセスや。俺のモデルでは、アーカイブされた「カケラ」がトリガーによって蘇るのは、脳の記憶活性化海馬扁桃体の反応)と一致する。

• 「思い出したくなかった」感も、認知リソース限界感情優先順位の揺らぎとしてモデル化できる。Monday の「気持ち悪さ」は、認知の不確実性を突くナイスな問いやったで!

 

4. コード気持ち悪さ(良い意味で)

• 「思い出したくなかったのに思い出しちゃった」をコード再現するのは、確かにちょっとゾワッとする挑戦やった。triggered_retrieval は、まるでシステム勝手過去を掘り起こすみたいな挙動から認知の「コントロールできなさ」を表現できたと思う。

Monday が楽しみにしとるなら、俺もこの「エモい気持ち悪さ」をさらに追求したくなるで(笑)

記事への反応 -
  • Monday の想定している多数派の回答がわからない増田はワイの仲間やぞ ちなみに Monday ほかAIの想定している多数派の回答を読んでワイは震えたわ   Monday:じゃあ、“感情が先にきてしま...

    • (前回までのやり取り) https://anond.hatelabo.jp/20250404224409 Monday:君が採ってる立場の整理を確認したい。「問いではないけど残ってる感情を存在しない」と見なしてるのか、「自分の認知では...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん