はてなキーワード: Grothendieckとは
この構造はすべて、(集合と関数の)圏論的構造を持ちうるデータ空間です。
これらの直積圏 C = Cᵤ × Cᵢ 上で、fⱼ:C → ℝ を射とする関手列が定義されているとみなせます。
推薦問題の核心は、スコアや意味的な関係を 定量的または論理的に評価することにあります。これを抽象的に捉えるには、エンリッチド圏の理論が適しています。
推薦システムにおいて:
ユーザー u ∈ U、アイテム i ∈ I に対して、評価: v(u, i) ≔ g(f₁(u, i), ..., fₙ(u, i)) ∈ ℝ
これは、ユーザーとアイテムのペア空間 U × I を対象とする ℝ-エンリッチド圏と見なせる。
トポスとは、直感的には「集合のような性質を持つ圏」です。ただしそれは集合よりはるかに柔軟で、論理と空間の一般化的枠組みです。
本問題では、推薦空間自体を内部論理と意味を持つトポスと見なします。
| 圏 C | ユーザー×アイテムの意味空間 |
| 関手 F | 複数のスコアリング関数(f₁,…,fₙ) |
| 汎関数 g | 統合関数(線形でも非線形でも) |
| エンリッチ圏 V-Cat | スコアを評価距離や信頼値として扱う枠組み |
| トポス Sh(C, J) | 推薦を含む部分集合構造を持つ論理空間 |
| 内部論理 | 「どのアイテムを推薦すべきか」の命題定義 |
| 推薦関数 Rᵤ | トポス内の部分対象選択関数(述語による定義) |
「円高・デフレ」は(∞,1)-圏における安定な∞-構造の自己同型であり、「リフレ」は(∞,1)-論理の破綻とコヒーレンス崩壊を意味します。
Let 𝔛 be an ∞-topos
𝔛 ≅ Sh_∞(𝒞, J)
where 𝒞 is a small (∞,1)-category of economic objects (市場、通貨、資源等)
J is a Grothendieck topology encoding local economic accessibility (情報、価格、選好構造の被覆)
Let 𝓟 ∈ 𝔛 be an ∞-sheaf of price structures (物価∞-層)
ε ∈ Aut_𝔛(𝓟): 円購買力を記述する∞-自己同型変換
𝓤 ∈ π₀Map(1,𝓟): price-dependent global welfare section(厚生の∞-射影)
Assume:
∀x ∈ Obj(𝓟), ε(x) ≃ x in 𝔛
⇒ ε is an equivalence in Ho(𝔛)
⇒ preserves all ∞-categorical colimits and finite limits
⇨ 円高・デフレ操作は、𝔛の(∞,1)-安定構造を保ち、選好構造と整合的に作用する。
加えて、
Map(1,𝓟) ⊂ Stable_𝔛
ならば、ε induces a loop structure: ε ∈ Ω𝓟
⇨ ε はトポス論的 loop operation として、厚生構造の保存的変形を定義
Let ℛ: 𝓟 → 𝓟 be a morphism not preserving descent,
i.e., ℛ ∉ Sheaf_∞(𝒞,J), breaks colimit preservation
⇨ ℛ is not a geometric morphism ⇨ fails to preserve truncations, ∞-descent
また、ℛ induces a morphism:
with π₀(ℛ)(𝓤) undefined ⇨ ∃i>0, πᵢ(ℛ(𝓤)) ≠ 0 ⇒ 高次ホモトピーが消えない
⇨ リフレ政策は、厚生関数の高次ホモトピー的位相不整合をもたらす。
このとき、コヒーレンス条件(Segal条件、Univalence)不成立 ⇨ 𝔛 collapses to incoherent pre-sheaf ∞-category
一方は正しい数学の文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。
もう一方は完全に出鱈目な文章である。数学的に何の意味もない支離滅裂なものである。
本稿を通して、kは代数閉体とする。
i: [x: y] → [x^2: xy: y^2]
を考える。iの像は、ℙ^2の閉部分スキーム
Proj(k[X, Y, Z]/(Y^2 - XZ))
と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。
与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要な問題である。以下、可逆層と射影空間への射の関係について述べる。
定義:
Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである。
Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが
f: x → [s_0(x): ...: s_d(x)]
により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。
定義:
Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプルであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである。
例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、
dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n
∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))
であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。
∴ dim(O_{E}(np)) = n
n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。
この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合、次元の高い射影空間に埋め込める。
定義:
Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプルであるという。
与えられた可逆層がアンプルであるか判定するのは、一般的に難しい問題である。アンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である。
定理(Cartan-Serre-Grothendieck):
XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプルであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、
i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0
定理(Nakai-Moishezon):
Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプルであるためには、Xの任意の1次元以上の既約部分多様体Yに対して、
D^dim(Y).Y>0
kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は
E(X) = E_0⊕E_1⊕E_2⊕...
と分解し、各E_dはXのd次元部分多様体のホモトピー同値類からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。
このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、
・[Y] = [Q×Z] + [R]
・dim(R)<dim(Z)
が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。
dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。
このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるものが存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである。
定理:
各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は
f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}
と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である。
Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素を誘導する。この作用素に関しては、次の定理が重要である。
定理(Hilbert):
Xがコンパクトな代数群であれば、完備Euclid環に誘導された線形作用素は有界作用素である。
以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。
定理(Hilbert):