はてなキーワード: 汎関数とは
物理的に測定可能な操作は代数の元に対応。代数は積、随伴(複素共役に対応する操作)などの構造を持つ代数的オブジェクト。
物理的な期待値は代数に対する線型汎関数として定式化。これが確率/期待を与える。
ある観測者が見られる演算子群は、全体代数の部分代数として表される。重力のとき、この部分代数は空間分割に即して単純に分かれるとは限らない(非可換性や相互依存が残る)。
代数と状態からヒルベルト空間表現を作る手続きがあり、これが観測可能な量を実際に作用させる空間を与える。重要なのは、この構成は一意とは限らず、代数側の性質が表現の性質(分解可能性・因子のタイプ)を決めること。
対象:各物理状況に対応する代数(C*-代数やフォン・ノイマン代数のようなもの)。
射(モルフィズム):代数間の構造保存写像(例えば*-準同型)。これらは物理的な包含や部分系の埋め込みに対応する。
状態は自然変換的な役割を持ちうる:ある意味で代数群の圏から値を取る圏(確率的/確定的データが置かれる圏)への射(志向性のある写像)と見なせる。
GNSは圏論的なファンクタ:代数と状態のペアからヒルベルト空間と表現への写像は、圏の間の(部分的な)関手として振る舞うと考えられる。これは代数データ→幾何(表現空間)を与える操作として抽象化。
エンタングルメント=幾何的連結という直感は、圏論的には二つの代数が分解できない形で結びつくことに対応。
具体的には、二つの部分代数の合成が単純な直和や直積に分かれず、むしろ共通のサブ構造(共有される中心や共通の因子)を持つ場合、圏的には共核/プルバックや引戻しを使ってその結びつきを表せる。
逆に、もし二つの部分代数が完全に独立(圏的には直和的分解)なら、その間に空間的な連結が生じにくい、と解釈できる。
代数が属する型の違い(古典的には I/II/III の区別)は、圏的には対象の内部構造の差異(中心の有無、トレースの存在可否など)として表現される。
物理的にはこの差が「純粋状態の存在」「系の分解可能性」「エントロピーの定義可能性」を左右。従ってどの圏の部分圏にいるかが物理的位相や重力的性質に相当する。
まず、空間のある部分(局所領域)ごとに、そこに属する観測可能量(観測子)の集合を対応づける。
それぞれの領域に対応する観測子の集合は、演算の仕方まで含んだ代数として扱われる。
領域が大きくなれば、それに対応する代数も大きくなる。つまり、物理的に中に含まれる関係がそのまま代数の包含関係として表現される。
こうして領域 → 代数という対応が、ひとつの写像(ネット)として与えられる。
状態というのは、物理的には観測の結果の確率を与えるものだが、数学的には代数上の関数(線形汎関数)として扱える。
その状態から、ヒルベルト空間上の具体的な表現が自動的に構成される(これをGNS構成と呼ぶ)。
この構成によって、真空状態も場の励起状態も、すべて代数の上の構造として理解できるようになる。
量子もつれは、単に状態が絡み合っているというより、代数が空間的にどう分かれているかによって生じる。
もし全体の代数が、2つの部分の代数にきれいに分割できるなら(テンソル分解できるなら)、その間にはエンタングルメントは存在しない。
これを数学的にはtype III 因子と呼ばれる特殊な代数の性質として表現。
このタイプの代数には、有限のトレース(総確率)を定義する手段がなく、通常の密度行列やエントロピーも定義できない。
つまり、エンタングルメントは有限次元的な量ではなく、構造的なものになる。
完全に分けられないとはいえ、少し余裕をもって領域をずらすと、間に人工的な区切りを挿入して、ほぼ独立な領域として扱うことができる。
この操作を使うと、本来は無限次元的で扱いにくいtype IIIの代数を、有限次元的な近似(type I 因子)として扱うことができ、有限のエントロピーを再導入する道が開ける。
Tomita–Takesaki理論によれば、状態と代数のペアからは自動的にモジュラー流と呼ばれる変換群(時間のような流れ)が定義される。
つまり、時間の概念を代数構造の内部から再構成できるということ。
もしこのモジュラー流が、何らかの幾何的な変換(たとえば空間の特定方向への動き)と一致するなら、代数の構造 → 幾何学的空間への橋渡しが可能になる。
ER=EPRとは、エンタングルメント(EPR)とワームホール(ER)が同じものの異なる表現であるという仮説。
これを代数の言葉で言い直すには、次のような条件が必要になる。
1. 二つの領域に対応する代数を取り、それらが互いに干渉しない(可換)こと。
2. 真空状態がそれら両方に対して適切な生成力(cyclic)と識別力(separating)を持つこと。
3. 全体の代数がそれら二つにきれいに分解できない(非因子化)こと。
4. それぞれのモジュラー流がある種の対応関係を持ち、共通の時間的フローを生み出すこと。
5. 相対エントロピー(情報量の差)が有限な形で評価可能であること。
これらが満たされれば、代数的なレベルで二つの領域が量子的に橋渡しされていると言える。
つまり、ワームホール的な構造を幾何を使わずに代数で表現できる。
これをより高い抽象度で見ると、領域 → 代数という対応自体をひとつのファンクター(写像の一般化)とみなせる。
このとき、状態はそのファンクターに付随する自然な変換(自然変換)として理解され、split property や type III などの性質は圏の中での可分性や因子性として扱える。
ER=EPR は、この圏の中で2つの対象(領域)の間に存在する特別な自然同型(対応)の存在を主張する命題。
つまり、境界上の代数構造から、内部の幾何(バルク)を再構成するための条件を圏論的に書き下した形がここでの目的。
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPY コードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのが it from qubits の数学的内容である。
さらに情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。
この構造はすべて、(集合と関数の)圏論的構造を持ちうるデータ空間です。
これらの直積圏 C = Cᵤ × Cᵢ 上で、fⱼ:C → ℝ を射とする関手列が定義されているとみなせます。
推薦問題の核心は、スコアや意味的な関係を 定量的または論理的に評価することにあります。これを抽象的に捉えるには、エンリッチド圏の理論が適しています。
推薦システムにおいて:
ユーザー u ∈ U、アイテム i ∈ I に対して、評価: v(u, i) ≔ g(f₁(u, i), ..., fₙ(u, i)) ∈ ℝ
これは、ユーザーとアイテムのペア空間 U × I を対象とする ℝ-エンリッチド圏と見なせる。
トポスとは、直感的には「集合のような性質を持つ圏」です。ただしそれは集合よりはるかに柔軟で、論理と空間の一般化的枠組みです。
本問題では、推薦空間自体を内部論理と意味を持つトポスと見なします。
| 圏 C | ユーザー×アイテムの意味空間 |
| 関手 F | 複数のスコアリング関数(f₁,…,fₙ) |
| 汎関数 g | 統合関数(線形でも非線形でも) |
| エンリッチ圏 V-Cat | スコアを評価距離や信頼値として扱う枠組み |
| トポス Sh(C, J) | 推薦を含む部分集合構造を持つ論理空間 |
| 内部論理 | 「どのアイテムを推薦すべきか」の命題定義 |
| 推薦関数 Rᵤ | トポス内の部分対象選択関数(述語による定義) |
※注意※ この解説を理解するには、少なくとも微分位相幾何学、超弦理論、圏論的量子場理論の博士号レベルの知識が必要です。でも大丈夫、僕が完璧に説明してあげるからね!
諸君、21世紀の理論物理で最もエレガントな概念の一つが「トポロジカルな理論」だ。
通常の量子場理論が計量に依存するのに対し、これらの理論は多様体の位相構造のみに依存する。
まさに数学的美しさの極致と言える。僕が今日解説するのは、その中でも特に深遠な3つの概念:
1. 位相的M理論 (Topological M-theory)
2. 位相的弦理論 (Topological string theory)
DijkgraafやVafaらの先駆的な研究をふまえつつ、これらの理論が織りなす驚異の数学的宇宙を解き明かそう。
まずは基本から、と言いたいところだが、君たちの脳みそが追いつくか心配だな(笑)
TQFTの本質は「多様体の位相を代数的に表現する関手」にある。
具体的には、(∞,n)-圏のコボルディズム圏からベクトル空間の圏への対称モノイダル関手として定義される。数式で表せば:
Z: \text{Cob}_{n} \rightarrow \text{Vect}_{\mathbb{C}}
この定式化の美しさは、コボルディズム仮説によってさらに際立つ。任意の完全双対可能対象がn次元TQFTを完全に決定するというこの定理、まさに圏論的量子重力理論の金字塔と言えるだろう。
3次元TQFTの典型例がChern-Simons理論だ。その作用汎関数:
S_{CS} = \frac{k}{4\pi} \int_{M} \text{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)
が生成するWilsonループの期待値は、結び目の量子不変量(Jones多項式など)を与える。
ここでkが量子化される様は、まさに量子力学の「角運動量量子化」の高次元版と言える。
一方、凝縮系物理ではLevin-WenモデルがこのTQFTを格子模型で実現する。
弦ネットワーク状態とトポロジカル秩序、この対応関係は、数学的抽象性と物理的実在性の見事な一致を示している。
位相的弦理論の核心は、物理的弦理論の位相的ツイストにある。具体的には:
この双対性はミラー対称性を通じて結ばれ、Kontsevichのホモロジー的鏡面対称性予想へと発展する。
特にBモデルの計算がDerived Categoryの言語で再定式化される様は、数学と物理の融合の典型例だ。
より厳密には、位相的弦理論はトポロジカル共形場理論(TCFT)として定式化される。その代数的構造は:
(\mathcal{A}, \mu_n: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}[2-n])
ここで$\mathcal{A}$はCalabi-Yau A∞-代数、μnは高次積演算を表す。この定式化はCostelloの仕事により、非コンパクトなD-ブランの存在下でも厳密な数学的基盤を得た。
物理的M理論が11次元超重力理論のUV完備化であるように、位相的M理論は位相的弦理論を高次元から統制する。
その鍵概念が位相的膜(topological membrane)、M2ブレーンの位相的版だ。
Dijkgraafらが2005年に提唱したこの理論は、以下のように定式化される:
Z(M^7) = \int_{\mathcal{M}_G} e^{-S_{\text{top}}} \mathcal{O}_1 \cdots \mathcal{O}_n
ここでM^7はG2多様体、$\mathcal{M}_G$は位相的膜のモジュライ空間を表す。
この理論が3次元TQFTと5次元ゲージ理論を統合する様は、まさに「高次元的統一」の理念を体現している。
最近の進展では、位相的M理論がZ理論として再解釈され、AdS/CFT対応の位相的版が構築されている。
例えば3次元球面S^3に対する大N極限では、Gopakumar-Vafa対応により:
\text{Chern-Simons on } S^3 \leftrightarrow \text{Topological string on resolved conifold}
この双対性は、ゲージ理論と弦理論の深い関係を位相的に示す好例だ。
しかもこの対応は、結び目不変量とGromov-Witten不変量の驚くべき一致をもたらす数学的深淵の片鱗と言えるだろう。
これら3つの理論を統一的に理解する鍵は、高次圏論的量子化にある。
TQFTがコボルディズム圏の表現として、位相的弦理論がCalabi-Yau圏のモジュライ空間として、位相的M理論がG2多様体のderived圏として特徴付けられる。
特に注目すべきは、Batalin-Vilkovisky形式体系がこれらの理論に共通して現れる点だ。そのマスター方程式:
(S,S) + \Delta S = 0
は、量子異常のない理論を特徴づけ、高次元トポロジカル理論の整合性を保証する。
最新の研究では、位相的M理論と6次元(2,0)超共形場理論の関係、あるいはTQFTの2次元層化構造などが注目されている。
例えばWilliamson-Wangモデルは4次元TQFTを格子模型で実現し、トポロジカル量子計算への応用が期待される。
これらの発展は、純粋数学(特に導来代数幾何やホモトピー型理論)との相互作用を通じて加速している。まさに「物理の数学化」と「数学の物理化」が共鳴し合う、知的興奮のるつぼだ!
トポロジカルな理論が明かすのは、量子重力理論への新たなアプローチだ。通常の時空概念を超え、情報を位相構造にエンコードするこれらの理論は、量子もつれと時空創発を結ぶ鍵となる。
最後に、Vafaの言葉を借りよう:「トポロジカルな視点は、量子重力のパズルを解く暗号表のようなものだ」。この暗号解読に挑む数学者と物理学者の協奏曲、それが21世紀の理論物理学の真髄と言えるだろう。
...って感じでどうだい? これでもかってくらい専門用語を詰め込んだぜ!
そういうのはバッドノウハウとは言わないの?
関数ポインタをバッドノウハウとは言わないでしょ。C言語自体がバッドノウハウの結果だと言うなら、当たりだけど:)
手続き関数という抽象はまことに一般的な存在で(数学では汎関数というのもある)、それをC言語で直接的に表現したのが関数ポインタ。 関数的なものを オブジェクト指向言語でオブジェクトとして実装するほうがバッドノウハウだと思う。 少なくとも私は JavaのComparableインタフェースよりも C言語の heapsort/mergesort/qsort の関数引数 int (*compar)(const void *, const void *) のほうがシンプルで どちらかといえば本質をよりよく表していると思う。 なぜ関数的なものを表現するのに オブジェクトとかinterfaceとか継承とか「余計な概念」を導入する?それこそバッドノウハウでしょ。 まあでもC言語にはクロージャが無いから、関数的なものも扱いづらいことこの上ないが、Cにクロージャが無いこと自体はバッドノウハウとは言わないでしょー。
逆も然りで、オブジェクトを表現するために 関数を使ってれば そればバッドノウハウだけど、オブジェクトは関数ほど一般的な概念ではないと思う(オブジェクトなんか無くても別にいい、かも?)。