「汎関数」を含む日記 RSS

はてなキーワード: 汎関数とは

2025-11-13

抽象数学とか物理学とか

定式化

物理系(量子場+重力) ⇨ 代数対象(A)

物理的に測定可能操作代数の元に対応代数は積、随伴複素共役対応する操作)などの構造を持つ代数オブジェクト

状態物理的な密度波動関数) ⇨ 代数上の正値線型汎関数(φ)

物理的な期待値代数に対する線型汎関数として定式化。これが確率/期待を与える。

観測者や部分系 ⇨ 代数のサブオブジェクト(B ⊂ A)

ある観測者が見られる演算子群は、全体代数部分代数として表される。重力とき、この部分代数空間分割に即して単純に分かれるとは限らない(非可換性や相互依存が残る)。

ヒルベルト空間再構成 ⇨ GNS 構成代数状態表現

代数状態からヒルベルト空間表現を作る手続きがあり、これが観測可能な量を実際に作用させる空間を与える。重要なのは、この構成は一意とは限らず、代数側の性質表現性質(分解可能性・因子のタイプ)を決めること。

圏的な言い方

対象:各物理状況に対応する代数(C*-代数フォン・ノイマン代数のようなもの)。

射(モルフィズム):代数間の構造保存写像(例えば*-準同型)。これらは物理的な包含や部分系の埋め込みに対応する。

状態自然変換的な役割を持ちうる:ある意味代数群の圏から値を取る圏(確率的/確定的データが置かれる圏)への射(志向性のある写像)と見なせる。

GNSは圏論的なファンクタ:代数状態ペアからヒルベルト空間表現への写像は、圏の間の(部分的な)関手として振る舞うと考えられる。これは代数データ幾何表現空間)を与える操作として抽象化

ER=EPR現象抽象化

エンタングルメント幾何的連結という直感は、圏論的には二つの代数が分解できない形で結びつくことに対応

具体的には、二つの部分代数の合成が単純な直和や直積に分かれず、むしろ共通のサブ構造(共有される中心や共通の因子)を持つ場合、圏的には共核/プルバックや引戻しを使ってその結びつきを表せる。

逆に、もし二つの部分代数が完全に独立(圏的には直和的分解)なら、その間に空間的な連結が生じにくい、と解釈できる。

代数の型(type)と物理位相的/幾何的特徴

代数が属する型の違い(古典的には I/II/III の区別)は、圏的には対象の内部構造差異(中心の有無、トレース存在可否など)として表現される。

物理的にはこの差が「純粋状態存在」「系の分解可能性」「エントロピー定義可能性」を左右。従ってどの圏の部分圏にいるか物理位相重力性質に相当する。

2025-11-12

抽象数学とかER=EPRとか

まず、空間のある部分(局所領域)ごとに、そこに属する観測可能量(観測子)の集合を対応づける。

それぞれの領域対応する観測子の集合は、演算の仕方まで含んだ代数として扱われる。

領域が大きくなれば、それに対応する代数も大きくなる。つまり物理的に中に含まれ関係がそのまま代数包含関係として表現される。

こうして領域代数という対応が、ひとつ写像ネット)として与えられる。

状態というのは、物理的には観測の結果の確率を与えるものだが、数学的には代数上の関数線形汎関数)として扱える。

その状態からヒルベルト空間上の具体的な表現自動的構成される(これをGNS構成と呼ぶ)。

この構成によって、真空状態も場の励起状態も、すべて代数の上の構造として理解できるようになる。

量子もつれは、単に状態が絡み合っているというより、代数空間的にどう分かれているかによって生じる。

もし全体の代数が、2つの部分の代数にきれいに分割できるなら(テンソル分解できるなら)、その間にはエンタングルメント存在しない。

ところが、量子場の理論では、この分割が厳密には不可能

これを数学的にはtype III 因子と呼ばれる特殊代数性質として表現

このタイプ代数には、有限のトレース(総確率)を定義する手段がなく、通常の密度行列エントロピー定義できない。

まりエンタングルメントは有限次元的な量ではなく、構造的なものになる。

完全に分けられないとはいえ、少し余裕をもって領域をずらすと、間に人工的な区切りを挿入して、ほぼ独立領域として扱うことができる。

これがsplit propertyと呼ばれる条件。

この操作を使うと、本来無限次元的で扱いにくいtype IIIの代数を、有限次元的な近似(type I 因子)として扱うことができ、有限のエントロピーを再導入する道が開ける。

Tomita–Takesaki理論によれば、状態代数ペアから自動的にモジュラー流と呼ばれる変換群(時間のような流れ)が定義される。

まり時間概念代数構造の内部から再構成できるということ。

もしこのモジュラー流が、何らかの幾何的な変換(たとえば空間特定方向への動き)と一致するなら、代数構造幾何学的空間への橋渡しが可能になる。

ER=EPRとは、エンタングルメントEPR)とワームホールER)が同じものの異なる表現であるという仮説。

これを代数言葉で言い直すには、次のような条件が必要になる。

1. 二つの領域対応する代数を取り、それらが互いに干渉しない(可換)こと。

2. 真空状態がそれら両方に対して適切な生成力(cyclic)と識別力(separating)を持つこと。

3. 全体の代数がそれら二つにきれいに分解できない(非因子化)こと。

4. それぞれのモジュラー流がある種の対応関係を持ち、共通時間フローを生み出すこと。

5. 相対エントロピー情報量の差)が有限な形で評価可能であること。

これらが満たされれば、代数的なレベルで二つの領域が量子的に橋渡しされていると言える。

まりワームホール的な構造幾何を使わず代数表現できる。

これをより高い抽象度で見ると、領域代数という対応自体ひとつファンクター(写像一般化)とみなせる。

このとき状態はそのファンクターに付随する自然な変換(自然変換)として理解され、split property や type III などの性質は圏の中での可分性や因子性として扱える。

ER=EPR は、この圏の中で2つの対象領域)の間に存在する特別自然同型(対応)の存在を主張する命題

まり境界上の代数構造から、内部の幾何バルク)を再構成するための条件を圏論的に書き下した形がここでの目的

まとめ

2025-10-28

抽象数学とか超弦理論かについて

まず対象抽象化するために、物理系は局所演算子代数ネットワーク局所性を持つモノイド圏あるいは因子化代数)として扱う。

境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。

重力バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル拡張)としてモデル化される。

ホログラフィーは単なる同値性ではなく、境界のモノイド的データバルクの因子化代数データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値空間)を保つ関手の同型として書ける。

これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルク対応する因子化代数局所的場代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対存在すると仮定する。

境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルク幾何情報はそのホモロジー/コホモロジー符号化される。

エントロピーエンタングルメント幾何化は情報幾何学的メトリック還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。

これにより、テンソルネットワークは単なる数値的近似ではなく、グラフからヒルベルト空間への忠実なモノイド的関手であるグラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数状態和(state-sum)を与える。

MERA や PEPS、HaPPY コードは、この関手が持つ特定圧縮階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である

テンソルネットワーク幾何を作るとは、エントロングルメント計量(情報計量)から接続リーマン性質再構成する手続き意味し、これが空間距離や曲率に対応するというのが it from qubits の数学的内容である

さら情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成圏論的条件(右随伴を持つ関手存在)として表現される。

すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所情報回復可能となる。

ER=EPR はこの文脈ホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。

言い換えれば、局所ユニタリ同値で分類されるエンタングルメントコホモロジーは、バルクホモトピー的結合(位相的/幾何接続)を決定する。

ブラックホール熱力学性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。

特にブラックホール外部におけるモジュラーハミルトニアン境界状態の相対エントロピーに関連し、そのフローバルク時間発展に対応する(模擬的にはKMS状態と熱平衡)。

サブファクター理論ジョーンズ指数は、事象地平線をまたぐ情報部分代数埋め込みの指標として機能し、情報損失やプライバシー情報の遮蔽)は部分代数指数と絡み合う。

ブラックホールの微視的自由度カウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。

超弦理論的な追加自由度多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれモチーフ的/導来スタック手法(derived stacks, spectral algebraic geometry)で整然と扱える。

これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。

この全体構造統一する言葉は高次圏的因子化双対である物理理論は、局所オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。

したがって「it from qubits」は、局所的量子代数圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPRエンタングルメント同値類とバルクコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論指数、モジュラーデータ)として測られる。

これが、抽象化した観点から見た諸理論統一スキームである

2025-05-28

推薦系スコア統合問題

この構造はすべて、(集合と関数の)圏論構造を持ちうるデータ空間です。

ステップ 1:圏と関手による基本抽象化

まず、構造を圏的に捉えます

これらの直積圏 C = Cᵤ × Cᵢ 上で、fⱼ:C → ℝ を射とする関手列が定義されているとみなせます

ステップ 2:エンリッチド圏による意味付け(V-Category)

推薦問題の核心は、スコア意味的な関係定量的または論理的評価することにあります。これを抽象的に捉えるには、エンリッチド圏の理論が適しています

2.1 定義:V-エンリッチド圏 (V-category)
  • V をモノイド圏とする(例:(ℝ≥0, +, 0) または ([0,1], max, 0))
  • 任意の2対象 x, y に対して、「射」ではなく「x から y への距離」または「評価値」v(x, y) ∈ V が与えられる

推薦システムにおいて:

2.2 本問題への適用

ユーザー u ∈ U、アイテム i ∈ I に対して、評価: v(u, i) ≔ g(f₁(u, i), ..., fₙ(u, i)) ∈ ℝ

これは、ユーザーアイテムペア空間 U × I を対象とする ℝ-エンリッチド圏と見なせる。

ステップ 3:トポス理論への接続

3.1 トポスとは?

トポスとは、直感的には「集合のような性質を持つ圏」です。ただしそれは集合よりはるかに柔軟で、論理空間一般化的枠組みです。

問題では、推薦空間自体を内部論理意味を持つトポスと見なします。

3.2 推薦空間トポスとして構築

ステップ 4:推論と最大化をトポス内部で定義

ステップ 5:総合抽象構造としての構成


総括

圏 C ユーザー×アイテム意味空間
関手 F 複数スコアリング関数(f₁,…,fₙ)
汎関数 g 統合関数線形でも非線形でも)
エンリッチ圏 V-Cat スコア評価距離や信頼値として扱う枠組み
トポス Sh(C, J) 推薦を含む部分集合構造を持つ論理空間
内部論理 「どのアイテムを推薦すべきか」の命題定義
推薦関数 Rᵤ トポス内の部分対象選択関数(述語による定義

2025-04-13

物理学とは何か

物理学概念対応
物体対象 A ∈ 𝒞
力、相互作用 射 f: A → B
法則 射の合成規則 g ∘ f
運動方程式汎関数の変分問題
空間・時空 多様体 𝓜
測定 射影演算子 or 評価写像
対称性群作用 G ⇀ 𝒞
保存則 ノーター定理による群の不変量

2025-02-27

位相M理論位相的弦理論、そして位相的量子場理論

※注意※ この解説理解するには、少なくとも微分位相幾何学超弦理論圏論的量子場理論博士号レベル知識必要です。でも大丈夫、僕が完璧説明してあげるからね!

1. イントロダクション:トポロジカルな物理パラダイムシフト

諸君21世紀理論物理で最もエレガントな概念の一つが「トポロジカルな理論」だ。

通常の量子場理論が計量に依存するのに対し、これらの理論多様体位相構造のみに依存する。

まさに数学的美しさの極致と言える。僕が今日解説するのは、その中でも特に深遠な3つの概念

1. 位相M理論 (Topological M-theory)

2. 位相的弦理論 (Topological string theory)

3. 位相的量子場理論 (TQFT)

DijkgraafやVafaらの先駆的な研究をふまえつつ、これらの理論が織りなす驚異の数学宇宙を解き明かそう。

まずは基本から、と言いたいところだが、君たちの脳みそが追いつくか心配だな(笑)

2. 位相的量子場理論(TQFT):

2.1 コボルディズム仮説と関手的定式化

TQFTの本質は「多様体位相代数的に表現する関手」にある。

具体的には、(∞,n)-圏のコボルディズム圏からベクトル空間の圏への対称モノイダ関手として定義される。数式で表せば:

Z: \text{Cob}_{n} \rightarrow \text{Vect}_{\mathbb{C}}  

この定式化の美しさは、コボルディズム仮説によってさらに際立つ。任意の完全双対可能対象がn次元TQFTを完全に決定するというこの定理、まさに圏論的量子重力理論金字塔と言えるだろう。

2.2 具体例:Chern-Simons理論Levin-Wenモデル

3次元TQFTの典型例がChern-Simons理論だ。その作用汎関数

S_{CS} = \frac{k}{4\pi} \int_{M} \text{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)  

が生成するWilsonループ期待値は、結び目の量子不変量(Jones多項式など)を与える。

ここでkが量子化される様は、まさに量子力学の「角運動量量子化」の高次元版と言える。

一方、凝縮系物理ではLevin-WenモデルがこのTQFTを格子模型で実現する。

ネットワーク状態とトポロジカル秩序、この対応関係は、数学抽象性と物理的実在性の見事な一致を示している。

3. 位相的弦理論

3.1 AモデルとBモデル双対

位相的弦理論の核心は、物理的弦理論位相ツイストにある。具体的には:

この双対性はミラー対称性を通じて結ばれ、Kontsevichのホモロジー的鏡面対称性予想へと発展する。

特にBモデル計算がDerived Categoryの言語で再定式化される様は、数学物理の融合の典型例だ。

3.2 カルタン形式とTCFT

より厳密には、位相的弦理論はトポロジカル共形場理論(TCFT)として定式化される。その代数構造は:

(\mathcal{A}, \mu_n: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}[2-n])  

ここで$\mathcal{A}$はCalabi-Yau A∞-代数、μnは高次積演算を表す。この定式化はCostelloの仕事により、非コンパクトなD-ブラン存在下でも厳密な数学的基盤を得た。

4. 位相M理論

4.1 高次元組織原理としての位相的膜

ここから真骨頂だ!

物理M理論11次元重力理論UV完備化であるように、位相M理論位相的弦理論を高次元から統制する。

その鍵概念位相的膜(topological membrane)、M2ブレーンの位相的版だ。

Dijkgraafらが2005年提唱たこ理論は、以下のように定式化される:

Z(M^7) = \int_{\mathcal{M}_G} e^{-S_{\text{top}}} \mathcal{O}_1 \cdots \mathcal{O}_n  

ここでM^7はG2多様体、$\mathcal{M}_G$は位相的膜のモジュライ空間を表す。

この理論3次元TQFTと5次元ゲージ理論統合する様は、まさに「高次元統一」の理念体現している。

4.2 Z理論位相的AdS/CFT対応

最近の進展では、位相M理論がZ理論として再解釈され、AdS/CFT対応位相的版が構築されている。

例えば3次元球面S^3に対する大N極限では、Gopakumar-Vafa対応により:

\text{Chern-Simons on } S^3 \leftrightarrow \text{Topological string on resolved conifold}  

この双対性は、ゲージ理論と弦理論の深い関係位相的に示す好例だ。

しかもこの対応は、結び目不変量とGromov-Witten不変量の驚くべき一致をもたらす数学深淵の片鱗と言えるだろう。

5. 統一的な視点

5.1 圏論量子化パラダイム

これら3つの理論統一的に理解する鍵は、高次圏論量子化にある。

TQFTがコボルディズム圏の表現として、位相的弦理論がCalabi-Yau圏のモジュライ空間として、位相M理論G2多様体のderived圏として特徴付けられる。

特に注目すべきは、Batalin-Vilkovisky形式体系がこれらの理論共通して現れる点だ。そのマスター方程式

(S,S) + \Delta S = 0  

は、量子異常のない理論を特徴づけ、高次元ポロジカル理論整合性保証する。

5.2 数理物理フロンティア

最新の研究では、位相M理論と6次元(2,0)超共形場理論関係、あるいはTQFTの2次元層化構造などが注目されている。

例えばWilliamson-Wangモデル4次元TQFTを格子模型で実現し、トポロジカル量子計算への応用が期待される。

これらの発展は、純粋数学特に導来代数幾何やホモトピー型理論)との相互作用を通じて加速している。まさに「物理数学化」と「数学物理化」が共鳴し合う、知的興奮のるつぼだ!

6. 結論

ポロジカルな理論が明かすのは、量子重力理論への新たなアプローチだ。通常の時空概念を超え、情報位相構造エンコードするこれらの理論は、量子もつれと時空創発を結ぶ鍵となる。

最後に、Vafaの言葉を借りよう:「トポロジカルな視点は、量子重力パズルを解く暗号表のようなものだ」。この暗号解読に挑む数学者と物理学者の協奏曲、それが21世紀理論物理学の真髄と言えるだろう。

...って感じでどうだい? これでもかってくらい専門用語を詰め込んだぜ!

君たちの脳みそオーバーフローしないよう、説明は最小限にしたんだ。まあ、これくらい軽くこなすよね? (自己満足の笑み)

2020-06-03

双対空間の具体例って何?

内積を取る線形汎関数

Vを内積(・,・)をもつn次元ベクトル空間としv∈Vを任意の元とすると、w∈Vに対して(v, w)を対応させる写像線形汎関数であって、この写像の全体はn次元ベクトル空間になるからV*と同型

微分形式

微分多様体の各点の1次微分形式は、その点の接ベクトル空間双対空間

コホモロジー

ホモロジーの各次数のチェインの双対空間を取ると、コホモロジーになる

2008-12-31

http://anond.hatelabo.jp/20081231190326

そういうのはバッドノウハウとは言わないの?

関数ポインタバッドノウハウとは言わないでしょ。C言語自体がバッドノウハウの結果だと言うなら、当たりだけど:)

手続き関数という抽象まことに一般的な存在で(数学では汎関数というのもある)、それをC言語で直接的に表現したのが関数ポインタ関数的なものを オブジェクト指向言語オブジェクトとして実装するほうがバッドノウハウだと思う。 少なくとも私は JavaのComparableインタフェースよりも C言語の heapsort/mergesort/qsort の関数引数 int (*compar)(const void *, const void *) のほうがシンプルで どちらかといえば本質をよりよく表していると思う。 なぜ関数的なものを表現するのに オブジェクトとかinterfaceとか継承とか「余計な概念」を導入する?それこそバッドノウハウでしょ。 まあでもC言語にはクロージャが無いから、関数的なものも扱いづらいことこの上ないが、Cにクロージャが無いこと自体はバッドノウハウとは言わないでしょー。

逆も然りで、オブジェクトを表現するために 関数を使ってれば そればバッドノウハウだけど、オブジェクト関数ほど一般的な概念ではないと思う(オブジェクトなんか無くても別にいい、かも?)。

あ、もちろん難読化や最適化や動的ロードのために件のようなコードを書くのはバッドノウハウに近いだろう。

2008-04-13

http://anond.hatelabo.jp/20080413225222

むしろ物理系の人の方がよっぽど簡単に入っていけるように思いますが。おそらくパターン認識とかデータマイニングとかそういう分野の方だと思いますが、物理やってた人は多いですよ。物理の人は統計力学やってるから色々計算方法のノウハウもわかってるし、エントロピーをはじめ、統計量を「物理量」として具体的なイメージと共に体でわかってるからとても強いと思うんですけれど。

特に変分法なんて、汎関数は全部(相対)エントロピーラグランジアンのどちらかに決まってるんですから。

 
ログイン ユーザー登録
ようこそ ゲスト さん