「微分積分学」を含む日記 RSS

はてなキーワード: 微分積分学とは

2025-11-23

No,日付,学習内容,教材 / リンク,時間配分,演習例,進捗チェック

1,2025/12/01,微分定義,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,例題5問+練習10問,☐

2,2025/12/02,公式を使った微分,『微積分の考え方』 P20-40,30+30,練習問題10問,☐

3,2025/12/03,多項式関数微分,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,練習問題10問,☐

4,2025/12/04,乗法・除法の微分,同上,30+30,練習問題10問,☐

5,2025/12/05,合成関数微分,https://www.khanacademy.org/math/calculus-1/cs1-chain-rule,30+30,例題5問+練習10問,☐

6,2025/12/06,高次関数微分,『微積分の考え方』 P41-60,30+30,練習問題10問,☐

7,2025/12/07,休息日,-,-,-,-

8,2025/12/08,復習:微分の基本,自作ドリル,60,過去日分問題50問,☐

9,2025/12/09,積分定義,https://www.khanacademy.org/math/calculus-1/cs1-integrals,30+30,例題5問+練習10問,☐

10,2025/12/10,不定積分計算,『微積分の考え方』 P70-90,30+30,練習問題10問,☐

11,2025/12/11,定積分計算,同上 P91-110,30+30,練習問題10問,☐

12,2025/12/12,積分応用問題,Khan Academy,30+30,例題5問+練習10問,☐

13,2025/12/13,部分積分,『微積分の考え方』 P111-130,30+30,練習問題10問,☐

14,2025/12/14,置換積分,同上 P131-150,30+30,練習問題10問,☐

15,2025/12/15,復習:積分の基本,自作ドリル,60,過去日分問題50問,☐

16,2025/12/16,べき級数定義・例,https://www.khanacademy.org/math/calculus-1/cs1-series,30+30,例題5問+練習10問,☐

17,2025/12/17,収束半径の計算,『微積分の考え方』 P150-170,30+30,練習問題10問,☐

18,2025/12/18,テイラー展開応用,同上 P171-190,30+30,練習問題10問,☐

19,2025/12/19,マクローリン展開,Khan Academy,30+30,例題5問+練習10問,☐

20,2025/12/20,総合演習(級数),自作ドリル,60,過去問題20問,☐

21,2025/12/21,差分演算の基本,『離散数学の考え方』 P10-30,30+30,例題5問+練習10問,☐

22,2025/12/22,下降階乗ベキと和分公式,同上 P31-50,30+30,練習問題10問,☐

23,2025/12/23,差分の積・合成,同上 P51-70,30+30,例題5問+練習10問,☐

24,2025/12/24,差分方程式入門,同上 P71-90,30+30,練習問題10問,☐

25,2025/12/25,特性方程式と解法,同上 P91-110,30+30,例題5問+練習10問,☐

26,2025/12/26,差分方程式の応用,同上 P111-130,30+30,練習問題10問,☐

27,2025/12/27,休息日,-,-,-,-

28,2025/12/28,復習:差分演算の基本,自作ドリル,60,過去日分問題50問,☐

29,2025/12/29,有理関数の和分,『数理科学演習』 P20-40,30+30,例題5問+練習10問,☐

30,2025/12/30,部分分数展開,同上 P41-60,30+30,練習問題10問,☐

31,2025/12/31,下降階乗ベキを使った和分,同上 P61-80,30+30,例題5問+練習10問,☐

32,2026/01/01,収束半径の計算,『微積分の考え方』 P190-210,30+30,練習問題10問,☐

33,2026/01/02,級数の応用問題,同上 P211-230,30+30,例題5問+練習10問,☐

34,2026/01/03,休息日,-,-,-,-

35,2026/01/04,コーシーリーマン方程式入門,『複素関数入門』 P10-30,30+30,例題5問+練習10問,☐

36,2026/01/05,正則関数の条件,同上 P31-50,30+30,練習問題10問,☐

37,2026/01/06,偏微分入門,『微分積分学』 P150-170,30+30,例題5問+練習10問,☐

38,2026/01/07,偏微分の応用,同上 P171-190,30+30,練習問題10問,☐

39,2026/01/08,ラプラス方程式基礎,同上 P191-210,30+30,例題5問+練習10問,☐

40,2026/01/09,休息日,-,-,-,-

41,2026/01/10,偏微分総合演習,自作ドリル,60,過去日分問題50問,☐

42,2026/01/11,差分方程式微分関係,『離散数学の考え方』 P131-150,30+30,例題5問+練習10問,☐

43,2026/01/12,線形差分方程式,同上 P151-170,30+30,練習問題10問,☐

44,2026/01/13,非線形差分方程式,同上 P171-190,30+30,例題5問+練習10問,☐

45,2026/01/14,休息日,-,-,-,-

46,2026/01/15,総合演習:差分方程式,自作ドリル,60,過去日分問題50問,☐

47,2026/01/16,微分方程式入門,『微分積分学』 P211-230,30+30,例題5問+練習10問,☐

48,2026/01/17,一次微分方程式,同上 P231-250,30+30,練習問題10問,☐

49,2026/01/18,高次微分方程式,同上 P251-270,30+30,例題5問+練習10問,☐

50,2026/01/19,休息日,-,-,-,-

51,2026/01/20,微分方程式の応用,自作ドリル,60,過去日分問題50問,☐

52,2026/01/21,複素数関数入門,『複素関数入門』 P51-70,30+30,例題5問+練習10問,☐

53,2026/01/22,複素関数偏微分,同上 P71-90,30+30,練習問題10問,☐

54,2026/01/23,休息日,-,-,-,-

55,2026/01/24,級数展開(テイラーマクロリン)復習,『微積分の考え方』 P231-250,30+30,例題5問+練習10問,☐

56,2026/01/25,総合演習:微分積分,自作ドリル,60,過去問題50問,☐

57,2026/01/26,離散級数・下降階乗応用,『離散数学の考え方』 P191-210,30+30,例題5問+練習10問,☐

58,2026/01/27,休息日,-,-,-,-

59,2026/01/28,偏微分差分応用問題,自作ドリル,60,過去日分問題50問,☐

60,2026/01/29,複素関数応用問題,同上 P91-110,30+30,例題5問+練習10問,☐

61,2026/01/30,収束半径・級数応用,同上 P111-130,30+30,練習問題10問,☐

62,2026/01/31,休息日,-,-,-,-

63,2026/02/01,微分差分級数総合演習,自作ドリル,60,過去問題50問,☐

64,2026/02/02,差分方程式発展,『離散数学の考え方』 P211-230,30+30,例題5問+練習10問,☐

65,2026/02/03,微分方程式発展,『微分積分学』 P271-290,30+30,練習問題10問,☐

66,2026/02/04,休息日,-,-,-,-

67,2026/02/05,複素関数偏微分発展,『複素関数入門』 P111-130,30+30,例題5問+練習10問,☐

68,2026/02/06,級数応用(収束判定),『微積分の考え方』 P251-270,30+30,練習問題10問,☐

69,2026/02/07,休息日,-,-,-,-

70,2026/02/08,総合演習(微分積分差分自作ドリル,60,過去問題50問,☐

71,2026/02/09,微分方程式応用演習,同上,60,過去問題50問,☐

72,2026/02/10,複素関数応用演習,同上,60,過去問題50問,☐

73,2026/02/11,休息日,-,-,-,-

74,2026/02/12,級数収束半径応用演習,同上,60,過去問題50問,☐

75,2026/02/13,差分方程式・下降階乗応用,同上,60,過去問題50問,☐

76,2026/02/14,休息日,-,-,-,-

77,2026/02/15,総合演習(微分積分級数自作ドリル,60,過去問題50問,☐

78,2026/02/16,微分方程式線形応用,同上,60,過去問題50問,☐

79,2026/02/17,複素関数偏微分応用,同上,60,過去問題50問,☐

80,2026/02/18,休息日,-,-,-,-

81,2026/02/19,級数収束定演習,同上,60,過去問題50問,☐

82,2026/02/20,差分方程式総合演習,同上,60,過去問題50問,☐

83,2026/02/21,休息日,-,-,-,-

84,2026/02/22,微分積分総合演習,自作ドリル,60,過去問題50問,☐

85,2026/02/23,偏微分複素関数演習,同上,60,過去問題50問,☐

86,2026/02/24,休息日,-,-,-,-

87,2026/02/25,級数収束応用演習,同上,60,過去問題50問,☐

88,2026/02/26,差分方程式・下降階乗応用演習,同上,60,過去問題50問,☐

89,2026/02/27,休息日,-,-,-,-

90,2026/02/28,微分積分級数総合演習,自作ドリル,60,過去問題50問,☐

91,2026/02/29,微分方程式応用演習,同上,60,過去問題50問,☐

92,2026/03/01,複素関数応用演習,同上,60,過去問題50問,☐

93,2026/03/02,休息日,-,-,-,-

94,2026/03/03,級数応用総合演習,自作ドリル,60,過去問題50問,☐

95,2026/03/04,差分方程式総合演習,同上,60,過去問題50問,☐

96,2026/03/05,休息日,-,-,-,-

97,2026/03/06,微分積分差分級数総合演習,自作ドリル,60,過去問題50問,☐

98,2026/03/07,微分方程式発展演習,同上,60,過去問題50問,☐

99,2026/03/08,複素関数発展演習,同上,60,過去問題50問,☐

100,2026/03/09,休息日,-,-,-,-

101,2026/03/10,級数収束半径・テイラー総合演習,自作ドリル,60,過去問題50問,☐

102,2026/03/11,差分方程式・下降階乗応用総合演習,同上,60,過去問題50問,☐

103,2026/03/12,休息日,-,-,-,-

104,2026/03/13,微分積分偏微分複素関数総合演習,自作ドリル,60,過去問題50問,☐

105,2026/03/14,微分方程式差分方程式級数総合演習,同上,60,過去問題50問,☐

106,2026/03/15,休息日,-,-,-,-

107,2026/03/16,総仕上げ演習(全範囲),自作ドリル,90,過去問題100問,☐

108,2026/03/17,休息日,-,-,-,-

2025-06-12

dorawii

大学数学の本って最初の方の分野なら高校数学を全て理解してなくてもわかる内容なんだよね。

具体的に言えば微分積分学(解析学の初歩)の本だ。(線形代数は今の高校カリキュラム行列を扱ってないので当たり前っちゃ当たり前)

大学への数学に登場するようなテクニックを既知としていないのがうれしい。

はみ出し削り論法なんて知らなくてもおそらくそ論法に相当するものが推論に必要証明では、当然では済ませずきちんとその論法の(おそらくより一般化されたもの)の紹介とその証明をその前後提示してくれるものだろう。

しかしこれが保形関数とか学部上級生の内容になるとダメだ。

俺は最初の一行目の「M2(R)はR上の線形空間としての自然位相もつ」でもう打ちのめされた。

M2定義は既知なのか。eman物理でSL2とかの群の存在を知ってるからとりあえず群の一種ということ以外何もわからん

三上洋一の数論幾何入門と言う本はわかりやすいというレビューが多かったからそれなら理解できるのかなあ。

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

https://anond.hatelabo.jp/20250612143405 
-----BEGIN PGP SIGNATURE-----

iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaEpnCAAKCRBwMdsubs4+
SBRRAQD0iuG8Ojp9pINGuQPARYEj1NVVNv0G5z+tNwPVHrYkSwEA05m6zLgxbpF4
sLFI7G2CJzhH8BhziI5kUVTer2bs7gM=
=k0mJ
-----END PGP SIGNATURE-----

2020-06-14

物理数学の履修時期は常に1年すれ違っている

物理学は常に数学の発展と共に進歩してきた。

というより物理学から必要に駆られた要請によって新たな数学概念が切り開かれてきた。

したがって当然、物理を学ぶ際には現象のもの理解とその裏に潜む数学的内容の理解が両輪となるのだが、

なぜだか日本学校教育においては、この前提が上手く機能していない。

物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要概念が登場するといった具合だ。

具体的には、以下のようなものがある。

まあ大学まで来ると履修順もある程度好きにできるのであくま一般的な例だが、それでも通常のシラバスでは上記時期に学ぶとされることが多い。

なぜこのようなことになっているのだろう?

はっきり言って物理が「公式の暗記ゲー」になっているのはほとんどこのすれ違いが要因だ。根本的に理解するための道具がないから、その結果だけを公式として先回りに輸入しているのだ。

単純に小学校低学年の段階で理科の履修時期を1年後送りにすれば済むと思うのだが、何か問題があるのだろうか?

(Appendix)

現行(今年度より順次終了)の指導要領は以下

https://www.mext.go.jp/a_menu/shotou/new-cs/youryou/1356249.htm

順次適用される新指導要領は以下

https://www.mext.go.jp/a_menu/shotou/new-cs/1384661.htm

ブクマ返し

かにそこで知識として触れることになっている。ちゃんとやるのは中1だが、そこは誤解を招く表現だった。申し訳ない。

それはない。上記リンク参照。勝手にやってる所はあるかも。

大学カリキュラムはさすがに学校ごと、個人ごとに差が大きく、必ず上記の通りと言うつもりはない。しかベクトル解析は通常1年次の微分積分学ではやらないと思う。

また一般的に、物理の履修が数学に先んじる傾向が大学でも続くという部分は、どの大学でもおおまかには認められると思う。

思ったより各校で工夫されているらしい。それ自体はとても好ましい。

だが基本は指導要領の通り教わっているものであり自分の教わり方が「例外的に素晴らしかった」ことは認識していただきたい。

教師判断で「工夫」しなければいけない状態はどうなのか?

必ずしも初学者発見順に沿って学習する必要はないと思っている。

今の体系の中で、最もわかりやすい順番に並べ直すべき。

それ自体反論はないが、であれば上記のように物理内で微積を導入するなどして必要数学を身に付けさせなければ意味がない。

たとえば等加速度運動二乗公式を暗記させる必要は一切ないはず。

そして具体例から抽象化までに1年のブランクは遠すぎる。

また、個人的には数学はそれ自体完結する学問だと思っているので、常に物理のために数学があるような受取り方になるとしたらちょっと良くない(個人美学だが)

直前に書いた通り、自分はこの考えを指示する。異論はない。

物理要請数学が切り開かれた」というのは、そういう一事実があると言いたかっただけで「全ての数学が」というように受け取らせるつもりはなかった。

ここも誤解を招く表現でしたね。

 
ログイン ユーザー登録
ようこそ ゲスト さん