はてなキーワード: カントールとは
一般人のよくある言い回しとして「大学の数学科でやっているのは数学ではなく哲学だ」というものがあります。これは実態を誤解したものと考えます。数学と哲学の論理構造や依拠する原理の違いに着目し、どのように誤解であると言えるかを解説してください。
---
多くの人が「大学の数学科は“哲学的なこと”をしている」と感じるのは、次のような体験的印象に基づいています。
**抽象度の高さ**
学校数学は数値計算や図形、方程式など具体的な操作が多いですが、大学では集合・位相・群・環などの抽象概念が中心になります。実体がない記号を扱うため、「思弁的で現実離れしている」という印象を受けやすい。
**証明の重視**
高校までの数学では、公式や定理を使って問題を解くことが主でした。大学数学では定理を“証明する”こと自体が中心になります。演繹的に進むため、哲学の論証と混同されやすい。
**直感に反する結果**
カントール集合やゲーデルの不完全性定理など、常識を裏切る結論に出会うと「これはもはや哲学では?」と感じがちです。
---
数学ではまず**公理系**(集合論・論理体系など)を定め、そこから**形式的に定義と定理を導く**ことが中心です。
証明は論理的整合性のもとに、有限の推論ステップで厳密に完結します。
「真偽」は定められた公理系の内部で決まる(たとえば ZFC の下での定理かどうか)。
哲学では「公理」や「定義」の選び方自体が主要な思考対象です。
例:真理とは何か、存在とは何か、数学の基盤は何に依拠するか。
推論自体は論理を用いますが、**議論の目的は推論よりも前提や概念の意味を吟味すること**にあります。
証明可能性よりも「概念的・認識論的な一貫性」を探ります。
### 要するに:
数学は**選んだ前提の内部で閉じた演繹体系**。
哲学は**前提や体系そのものを開かれた問いとして扱う**。
---
数学 哲学 ----- ---------------- ---------------- 基盤 公理・定義・形式論理 推論+概念分析・経験・メタ理論 真理の基準 公理系内の定理性 妥当性・合理性・批判的検討 方法 定義→補題→定理→系の形式的構築 問題設定→概念批判→異論との対話 ゴール 内部一貫性と定理の発見 前提の吟味と概念の明確化 ---
数学の抽象化は「より多くの具体例を統一的に扱う」ための道具です。たとえば群論は「対称性」という実際的な現象を一般化しています。現実逃避ではなく応用力の拡張です。
哲学的議論は自然言語の意味に依存しますが、数学の証明は形式言語に還元可能なレベルまで精密化されます。
哲学は「数学の基礎は何か」「無限とは何か」を問うかもしれませんが、数学科の学生が行うのは、すでに受け入れた公理体系の中で定理を立てる作業です。
---
## 5. まとめ
抽象度の高さや証明重視の新鮮さを「哲学的」と感じているに過ぎない
実際には**数学は厳密な公理体系の中での定理の探求**であり、前提の批判や概念の意味そのものを問う哲学とは方法も目標も異なる
今の世の中で、多くの人間が信じていることが天動説のようなものであり、
いや、科学の歴史というのは非常識な新理論が旧来の常識を覆すことの繰り返しなんだよ
非ユークリッド幾何学とか、カントールの濃度の概念とか、ボルツマンの気体分子運動論とか、それこそ相対性理論とか量子力学とか
そういう大きな転換は宗教の復権にはつながらず、逆に科学はそういう新しい常識を組み込むことで発展していった
あと、「天動説=宗教、地動説=科学」という見方は歴史的には正しくない
天動説も元々は観測データを説明するための科学理論として、キリスト教とは関係なく理論的に発展していった
惑星の運行を数学的にそれなりに予測できるところまで仕上がってて、宗教が後からその権威を利用して教義に取り込んだ
無限は様々な人たちを当惑させてきた。周囲の物理世界で観察されるものはすべて有限。
観測可能な宇宙の原子の数でさえ、想像を絶するほど大きいとはいえ、やはり有限。
数学はおそらく、無限とつながるための最も知性的で論理的な方法を与えてくれる。
数学的な無限理論は、19 世紀末にドイツの数学者カントールによってほぼ独力で作成された。
自分のアイデアを追求するために、カントールは途方もない勇気を示した。批判者たちに答えて「数学の本質はその自由にある。」と書いたのである。
数学では、選択された公理と論理規則に厳密に従わなければならない。
しかし、そのルールの中においては、本当に想像力を羽ばたかせることができる。数学には独断や偏見が入り込む余地はない。
カントールの考えは、無限大は数ではなく、むしろ集合の性質であるというものであった。
2 つの集合 A と B が与えられると、A から B への「写像(勝間さんじゃないですよ)」について考えることができる。
これは、 B の要素を A の各要素に割り当てるルールである。
カントールによって導入された重要な概念は、集合 A と B の間の1 対 1 対応である。これは、Bの各要素がAの1つの要素にのみ割り当てられるような、A から B への写像である。
Aが有限数の要素 (たとえば、n) を持ち、B が別の集合である場合、B にもn要素がある場合にのみ、AとBの間に1対1の対応関係が存在するという定義である。
ここで、無限集合の概念を導入できる。これは、Aと有限集合Bの間に1対1の対応がないような集合Aである。たとえば、自然数の集合 N={1,2, 3,…}は無限集合である。
ここまでの理論はかなり単純だ。しかしその後、カントールは驚くべき発見をした。互いに1対1対応していない無限の集合が存在するのである。
たとえば、集合Nと実数の集合Rの間には1対1の対応がないことがわかる。
カントールの対角線論証とも呼ばれる証明があるが、これはかなり美しい証明と言われている。
そこでは実数の集合と自然数の集合の間には 1 対 1 の対応関係がないということが示されている。実数の「無限大」は自然数の「無限大」よりも「大きい」と言える。
この 2 つの間に「無限」は存在するのか? これは、数理論理学における最も深い問題の 1 つである、有名な「連続体仮説」につながる。
「無限のコンテンツが溢れている」みたいな、無数と言えば良いところを無限と言うアホ。
いかなる大きな有限よりも無限は大きい。特異点を利用したブラックホールストレージでもない限り、無限のコンテンツなど存在しない。
それどころか、空間上に任意の2点を置き、この間の点の数を数えたら無限ではなく有限であるという可能性が(物理学的には)ある。観測可能な宇宙も無限ではない。
そうすると、なぜ人々が「無数」を「無限」と言ってしまうのか、なんとなくわかってくる。つまり数学音痴で無限というものの正体を全くわかっていないから。
カントールさえ、実数濃度の無限を想像して錯乱したのだから、無限を連呼するような奴は無限についてちっともわかっていないのである。
よく気がついたね。(カントール)
数学という学問は「反例があったら、仮説を否定できる」という学問なんだよな?だったら、数学的な問題を計算機で処理できなければ「計算機科学=数学」を否定できるのだろ?なら、今からやってやる。
① f(x) = x ^ 2, g(x) = 2 ^ x とする.
② x に無限に大きくなるとき、f(x) とg(x) は共に無限に発散するが、
③ 数学的には lim が「x →∞」のとき、f(x)〈 g(x) と言える。
④ なぜならば lim が「x →∞」のとき、(x^2)/(2 ^ x) は 0 に収束するからだ。
これは数学的には合っているだろ?歴史的にはカントールがこの難題をクリアしてくれたのだろ?俺は大学の数学科じゃないから不勉強なのは認める。ただ、上記の主張は数学的には合っているはずだ。
じゃあ、計算機で無限を比較するとどうなるか?これから書くことは、IEEE 754 といった現実世界のプロセッサで語るぞ。
③' 計算機では lim が「x →∞」のとき、f(x) 〈 g(x) と言えない。
④' なぜならば lim が「x →∞」のとき、f(x) と g(x) は +∞ という二進法上の値となり「等値」となるか、「比較できない」ものになる。
反例の反例が来るだろうから、こっちも否定しとくぞ。たとえば、Haskell のような遅延評価をする言語では ⑤ の「(x^2)/(2 ^ x) は 0 に収束する」という記述も可能ではある。ただ、それはアルゴリズム的に Haskell は記述できるからであって、メモリ上やプロセッサ上では扱えているわけではない。よって、この「反例の反例」は否定できる。
ホッテントリ読んでいたら、昔2chに投稿した駄文のことを思い出した。ググってサルベージしたので、ちょっと修正してここに書く。ちなみに、内容についてあまり突っ込むな。いろいろな意味で。
昔オーディオの新しい波に乗り切れなかったシュレーディンガーは、 コペンハーゲンのオーディオマニアに向けてこういうことを言った。
完全防音の部屋の中にオーディオセットがある。外から鍵をかけて密室にした後、目覚まし時計によってオーディオセットが演奏をはじめる。このとき、コペンハーゲン派の立場だとつぎのようになるぞ。
すなわち:
これは明らかにおかしい。
オーディオシステムの音のよさは試聴とは無関係にあらかじめ決まっているはずだだから、コペンハーゲン派のオーディオ解釈は誤っている
しかし、ニールス・ボーアは直感に反してオーディオシステムの音は聞いてみるまでわからないだけでなく、聞いてみるまで性能すら定まらないのだとあらためて主張した(聞くまで無調整と言う意味ではない)。
これが有名なシュレーディンガーのオーディオシステムというパラドックスだ。
昔、音のよさには絶対的な基準があるという説がもっぱら主流だった。だが、こうすると音のよさが見かけの上で無限大になる場合があるという計算結果がでてパニックになった。困ったことに、絶対基準があると仮定して行ったブラインドテストがこれを否定した(マイケルソン=モーレーの実験)
その後、1905年にアインシュタインが音のよさには相対的な基準しかなく、かつ上限が決まっていると仮定した理論展開を行う論文を書いた。これが特殊相対性理論だ。この衝撃的な論文のあと、加速する車の中のカーオーディオについても適用できる音響理論をうちたてたのが有名な一般相対性理論だ。相対性理論からは、「一生懸命作ったオーディオなのに友達のシステムの方がよく聞こえる」ことが理論的に導き出される。これは日本古来の経験則、「隣の芝生は青い」ともよく一致する。
数学者だったクルト・ゲーデルはオーディオマニアだったことでも有名だ。
彼はよい音を求めていつもパーツ屋に通っては怪しい部品だのケーブルだのを買い求めていた。友人はそれを揶揄して笑ったが、完璧主義者だったゲーデルは自分が買った高級オーディオケーブルが実はやくたいもない屑ケーブルであることを認めず、必死で言い訳を織り上げた。しかし、優れた数学者だった彼は自分の言い訳にほつれがあることに気づいた。次の二つを両立する言い訳が成り立たないのだ。
すなわち:「完全かつ無矛盾な小売系は存在しない」これは真に偉大な発見で彼の名声を高めた。しかし、後に音の滑らかさを追い求める連続体仮説に思いをめぐらすうちに、カントールと同じく狂気の闇へと落ちていくことになる。
日本経済が絶頂期にあった80年代初頭、一部のオーディオメーカーは将来市場が頭打ちになりかねないことを予見して体系的な市場アプローチ、すなわちマーケティングを導入し、市場の行方を占うことにした。
このとき問題になったのはオーディオマニア層だ。口うるさいくせに雑誌で発言力のあるマニアは市場としては小さいが無視できない。そこで、マニアがどのような振る舞いを行うか、その統計的な側面が研究された。
もっとも有名なのは「二人以上のマニアが同じ意見を持つことはない」という仮定に基づいて行われた研究だ。これは人の話は聞かないくせに、同意もしないというマニアの実に嫌らしい振る舞いを見事に反映したモデルだった。
このモデルに基づく市場動向の予測は、研究者の名前を取って、フェルミ・ディラック統計と呼ばれる。この統計は各社が採用して市場予測に使い、大きな成果をあげた。
なお、マニアも興奮してくると見かけの意見らしきものをつなぐことができなくなり、オーディオ好きの高校生と同じになる。この場合は古典的な統計が適用可能になる。すなわち、マニアも興奮すると大衆程度の振る舞いになり、ガウス分布に従うようになる。そのため、オーディオフェアなど興奮しがちな場所では古典統計が使われる。
同じころ、排他的でないマニアを冷静にすると、全員がひとつの意見をもつようになるというボーズ・アインシュタイン統計も発表された(アインシュタインは先の相対性音響論を発表したのと同一人物)。しかし、企業の企画担当者が「排他的でなく冷静な」マニアを想像できなかったことからこの統計は採用されず、一部研究者がその実現性を予想しただけだった。
転機は90年代半ばに訪れた。自分の意見より人の顔色を尊重する日本人に対して行われた一連の実験から、ボース・アインシュタイン統計が適用可能な場合が示された。一群のオーディオマニアを集め、彼らを数日にわたって否定することで体力と自意識を削り取ることにより、極度の低興奮状態に置く。この状態では部屋の中のすべてのオーディオマニアが尊師の言うとおり提示された オーディオセットはすばらしいと一様に誉めた。この歴史的な成功以来、同様の実験が都内各所の道場で行われたが、その後この実験は危険であるとして禁止されている。
やたらテンションの低いオーディオマニアが全員同じ意見を述べるようなキモイ状態は、ボース・アインシュタイン凝縮と呼ばれている。