はてなキーワード: イ・セドルとは
日本の囲碁は江戸時代以来、囲碁の家元四家が俸禄をもらう立場となり、切磋琢磨をしてきて長らく囲碁の本場となっていた。
しかし1980年代に韓国に追いつかれると、1990年代では抜き去られ、以後差が縮めることをできずここ30年ほど後塵を排してきた
その差は依然として大きく、世界戦が開催されては日本の棋士は大体二回戦までに全滅する、ということが続いてきていた
井山が爛柯杯にてベスト4まで進出すると、なんと応氏杯という4年に1度開催される囲碁のオリンピックで一力遼が元世界1位棋士、現在でもトップクラスの棋士・柯潔を三番勝負で破り決勝へ進出したのだ!
せっかく日本の棋士が頑張っているのだからぜひこの快挙をもっと多くの人にしってほしいし、注目してもらいたい!
決勝は五番勝負で8月12、14日 / 10月24、26、28日に行われる
ぜひ、この決勝だけでもいいので注目してみてほしい
https://www.youtube.com/watch?v=_SBgCCOr1nQ
日本人が国際棋戦の決勝に行くなんて次いつあるかわからないよ!(ちなみに今回6年ぶり)
【追記】
◯8月12日 一力遼(25位 10.081)vs 謝科(16位 10.261)中国 終始優勢を崩さず進めるも相手の猛追を受け薄氷の勝利!
◯8月14日 一力遼(25位 10.081)vs 謝科(16位 10.261)中国 絶望の局面から大逆転勝利を収め、日本人28年ぶりの優勝へ王手!
9月8日※ 一力遼(25位 10.081)vs 謝科(16位 10.261)中国
9月10日※ 一力遼(25位 10.081)vs 謝科(16位 10.261)中国
9月12日※ 一力遼(25位 10.081)vs 謝科(16位 10.261)中国
(※日程変更反映)
日本チーム最後の優勝→2005年 農心杯(各国5人勝ち抜き団体戦)
日本勢19年ぶり、日本人として実に27年ぶりの優勝を懸けた戦いなのだ
4年に一度開催される囲碁のオリンピック・ワールドカップのような大会
賞金は40万ドル(約6000万)
持ち時間が切れたら秒読みではなく、2目(ポイント)相手にあげて代わりに時間をもらうという独自ルールあり(回数上限あり)
第2回 1993年 徐奉洙(韓国) 3-2 大竹英雄(日本)
第3回 1996年 劉昌赫(韓国) 3-1 依田紀基(日本)←この時以来の決勝進出
一力遼(25位 10.081)河北新報御曹司で取締役。記者と棋士の二刀流。日本1位。現在、棋聖・天元・本因坊の三冠
VS
2020-04-27 黒番 敗北
2021-01-10 黒番 敗北
2021-01-12 白番 敗北
2024-06-19 白番 敗北
通算 0勝4敗
勝率 0.000
レート差 .346
◯一力遼(33位 9.882)vs 王元均(139位 8.759)台湾
◯一力遼(33位 9.882)vs 屠暁宇八段(26位 10.023)中国
◯一力遼(33位 9.882)vs 劉宇航(29位 9.986)中国
◯一力遼(33位 9.882)vs 許嘉陽(10位 10.389)中国 二大会連続の準決勝進出
●一力遼(33位 9.882)vs 柯潔(3位 10.611)中国 準決勝三番勝負#1
◯一力遼(33位 9.882)vs 柯潔(3位 10.611)中国 準決勝三番勝負#2
◯一力遼(33位 9.882)vs 柯潔(3位 10.611)中国 準決勝三番勝負#3 ←28年ぶり決勝進出
これらすべての重要な変動要因になりうるものがあります。つまり、より多くのスクレイピング・データでより大きな言語モデルをプリ・トレーニングするという素朴なアプローチが、まもなく深刻なボトルネックにぶつかり始める可能性があるということだ。
フロンティア・モデルはすでにインターネットの多くで訓練されている。例えば、Llama 3は15T以上のトークンで学習された。LLMのトレーニングに使用されたインターネットの多くのダンプであるCommon Crawlは、生で100Tトークンを超えるが、その多くはスパムや重複である(例えば、比較的単純な重複排除は30Tトークンにつながり、Llama 3はすでに基本的にすべてのデータを使用していることになる)。さらに、コードのようなより特殊な領域では、トークンの数はまだまだ少ない。例えば、公開されているgithubのリポジトリは、数兆トークンと推定されている。
データを繰り返すことである程度遠くまで行くことができるが、これに関する学術的な研究は、16エポック(16回の繰り返し)の後、リターンは非常に速く減少し、ゼロになることを発見し、繰り返しはそこまでしか得られないことを示唆している。ある時点で、より多くの(効果的な)計算を行ったとしても、データ制約のためにモデルをより良いものにすることは非常に難しくなる。私たちは、言語モデリング-プレトレーニング-パラダイムの波に乗って、スケーリングカーブに乗ってきた。大規模な投資にもかかわらず、私たちは停滞してしまうだろう。すべての研究室が、新しいアルゴリズムの改善や、これを回避するためのアプローチに大規模な研究の賭けに出ていると噂されている。研究者たちは、合成データからセルフプレー、RLアプローチまで、多くの戦略を試していると言われている。業界関係者は非常に強気のようだ:ダリオ・アモデイ(Anthropic社CEO)は最近、ポッドキャストでこう語った:「非常に素朴に考えれば、我々はデータ不足からそれほど遠くない[...]私の推測では、これが障害になることはない[...]。もちろん、これに関するいかなる研究結果も独占的なものであり、最近は公表されていない。
インサイダーが強気であることに加え、サンプル効率をはるかに向上させたモデルをトレーニングする方法(限られたデータからより多くのことを学べるようにするアルゴリズムの改良)を見つけることが可能であるはずだという強い直感的な理由があると思う。あなたや私が、本当に密度の濃い数学の教科書からどのように学ぶかを考えてみてほしい:
モデルをトレーニングする昔の技術は単純で素朴なものだったが、それでうまくいっていた。今、それがより大きな制約となる可能性があるため、すべての研究室が数十億ドルと最も賢い頭脳を投入して、それを解読することを期待すべきだろう。ディープラーニングの一般的なパターンは、細部を正しく理解するためには多くの努力(そして多くの失敗プロジェクト)が必要だが、最終的には明白でシンプルなものが機能するというものだ。過去10年間、ディープラーニングがあらゆる壁をぶち破ってきたことを考えると、ここでも同じようなことが起こるだろう。
さらに、合成データのようなアルゴリズムの賭けの1つを解くことで、モデルを劇的に改善できる可能性もある。直感的なポンプを紹介しよう。Llama 3のような現在のフロンティアモデルは、インターネット上でトレーニングされている。多くのLLMは、本当に質の高いデータ(例えば、難しい科学的問題に取り組む人々の推論チェーン)ではなく、このようながらくたにトレーニング計算の大半を費やしている。もしGPT-4レベルの計算を、完全に極めて質の高いデータに費やすことができたらと想像してみてほしい。
AlphaGo(囲碁で世界チャンピオンを破った最初のAIシステム)を振り返ることは、それが可能だと考えられる何十年も前に、ここでも役に立つ。
LLMのステップ2に相当するものを開発することは、データの壁を乗り越えるための重要な研究課題である(さらに言えば、最終的には人間レベルの知能を超える鍵となるだろう)。
以上のことから、データの制約は、今後数年間のAIの進歩を予測する際に、どちらに転んでも大きな誤差をもたらすと考えられる。LLMはまだインターネットと同じくらい大きな存在かもしれないが、本当にクレイジーなAGIには到達できないだろう)。しかし、私は、研究所がそれを解読し、そうすることでスケーリングカーブが維持されるだけでなく、モデルの能力が飛躍的に向上する可能性があると推測するのは妥当だと思う。
余談だが、このことは、今後数年間は現在よりも研究室間のばらつきが大きくなることを意味する。最近まで、最先端の技術は公表されていたため、基本的に誰もが同じことをやっていた。(レシピが公開されていたため、新参者やオープンソースのプロジェクトはフロンティアと容易に競合できた)。現在では、主要なアルゴリズムのアイデアはますます専有されつつある。今はフロンティアにいるように見えるラボでも、他のラボがブレークスルーを起こして先を急ぐ間に、データの壁にはまってしまうかもしれない。そして、オープンソースは競争するのがより難しくなるだろう。それは確かに物事を面白くするだろう。(そして、ある研究室がそれを解明すれば、そのブレークスルーはAGIへの鍵となり、超知能への鍵となる。)
続き I.GPT-4からAGIへ:OOMを数える(7) https://anond.hatelabo.jp/20240605210017
未だに「謎の半導体メーカー」程度の認識の方になぜNVIDIAが時価総額世界4位なのかをあれこれ説明する必要があるので短めにメモ。半導体業界のすみっこの人間なので機械学習まわりの説明は適当です
・~1993年 AI冬の時代。エージェントシステムがさほど成果を挙げられなかったり。まだ半導体やメモリの性能は現代とくらべてはるかに劣り、現代のような大規模データを用いた統計的処理など考えられなかった。2006年のディープラーニングの発明まで実質的な停滞は続く。
・1995年 NVIDIAが最初のグラフィックアクセラレータ製品NV1を発売。
・1999年 NVIDIAがGeForce 256発売。GPUという名が初めて使われる。以降、NVIDIAはGPU業界1位の座を守り続ける。
・2006年 GPGPU向け開発基盤CUDAを発表。以降、その並列計算に特化した性能を大規模コンピューティングに活用しようという動きが続く。
・2006年 ディープラーニングの発明。のちのビッグデータブームに乗り、これまでよりはるかに高性能なAIを模索する動きが始まる(第3次AIブームのおこり)
・2006年 CPU業界2位のAMDがGPU業界2位のATIを買収、チップセットにGPUを統合することで事実上自社製品をNVIDIAと切り離す戦略に出る。CPU業界1位のインテルも、同じく自社CPUに自社製GPUを統合する動きを強める。NVIDIAはこれまでの主力だったGPUチップセット製品の販売を終了し、データセンター向けGPGPUのTeslaシリーズ、ゲーム用外付けGPUのGeForceシリーズ、ARM系CPUと自社GPUを統合したTegraシリーズの3製品に整理する。このうちTeslaシリーズが性能向上やマイクロアーキテクチャ変更を経て現代のAIサーバ製品に直接つながる。GeForceシリーズはゲーマー向け需要や暗号通貨マイニング向け需要も取り込み成長。Tegraシリーズは後継品がNintendoSwitchに採用される。
・2012年 ディープラーニングが画像認識コンテストで圧倒的な成績を収め、実質的な第3次AIブームが始まる。
・2017年 Transformerモデル発表。これまでのNN・DLと異なり並列化で性能を上げるのが容易=デカい計算機を使えばAIの性能が上がる時代に突入。
・2018年 IBMがNVIDIAと開発した「Summit」がスパコン世界ランキング1位の座を5年ぶりに中国から奪還。全計算のうち96%がGPUによって処理され、HPC(ハイパフォーマンスコンピューティング)におけるGPUの地位は決定的になる。NVIDIAの開発したCPU-GPU間の高速リンク「NVLink」が大規模に活用される。「Summit」は2020年に「富岳」にトップを奪われるまで1位を維持。
・2018~2021年 BERTやXLNet、GPT2など大規模言語モデルの幕開け。まだ研究者が使うレベル。
・2019年 NVIDIA CEOジェスン・ファン(革ジャンおぢ)が「ムーアの法則は終わった」と見解を表明。半導体のシングルスレッド性能の向上は限界に達し、チップレットを始めとした並列化・集積化アーキテクチャ勝負の時代に入る。
・2022年 NVIDIAがH100発表。Transformerモデルの学習・推論機能を大幅に強化したサーバ向けGPUで、もはや単体でもスパコンと呼べる性能を発揮する。H100はコアチップGH100をTSMC N4プロセスで製造、SK Hynix製HBMとともにTSMC CoWoSパッケージング技術で集積したパッケージ。※N4プロセスは最新のiPhone向けSoCで採用されたN3プロセスの1つ前の世代だが、サーバ/デスクトップ製品向けプロセスとモバイル製品向けプロセスはクロックや電流量が異なり、HPC向けはN4が最新と言ってよい。
・2022年 画像生成AIブーム。DALL-E2、Midjourney、Stable Diffusionなどが相次いで発表。
・2022年 ChatGPT発表。アクティブユーザ1億人達成に2カ月は史上最速。
・2023年 ChatGPT有料版公開。Microsoft Copilot、Google Bard(Gemini)など商用化への動きが相次ぐ。各企業がNVIDIA H100の大量調達に動く。
・2024年 NVIDIAが時価総額世界4位に到達。半導体メーカー売上ランキング世界1位達成(予定)。
こうして見るとNVIDIAにとっての転換点は「ディープラーニングの発明」「GPGPU向けプログラミング環境CUDAの発表」「チップセットの販売からコンピューティングユニットの販売に転換」という3つが同時に起こった2006年であると言えそう。以降、NVIDIAはゲーマー向け製品やモバイル向け製品を販売する裏で、CUDAによってGPGPUの独占を続け、仮装通貨マイニングやスパコンでの活躍と言ったホップステップを経て今回の大きな飛躍を成し遂げた、と綺麗にまとめられるだろう。