はてなキーワード: ベクトル空間とは
超弦理論を物理的な実体(ひもや粒子)から引き剥がし、抽象数学の言葉で抽象化すると、圏論と無限次元の幾何学が融合した世界が現れる。
物理学者がひもの振動と呼ぶものは、数学者にとっては代数構造の表現や空間のトポロジー(位相)に置き換わる。
物理的なイメージである時空を動くひもを捨てると、最初に現れるのは複素幾何学。
ひもが動いた軌跡(世界面)は、数学的にはリーマン面という複素1次元の多様体として扱われる。
ひもの散乱振幅(相互作用の確率)を計算することは、異なる穴の数を持つすべてのリーマン面の集合、すなわちモジュライ空間上での積分を行うことに帰着。
ひもがどう振動するかという物理的ダイナミクスは幾何学的な形すら消え、代数的な対称性だけが残る。
共形場理論(CFT)。頂点作用素代数。ひもはヴィラソロ代数と呼ばれる無限次元リー環の表現論として記述される。粒子とは、この代数の作用を受けるベクトル空間の元に過ぎない。
1990年代以降、超弦理論はDブレーンの発見により抽象化された。
ミラー対称性。全く異なる形状の空間(AとB)が、物理的には等価になる現象。ホモロジカルミラー対称性。
Maxim Kontsevichによって提唱された定式化では、物理的背景は完全に消え去り、2つの異なる圏の等価性として記述される。
もはや空間が存在する必要はなく、その空間上の層の間の関係性さえあれば、物理法則は成立するという抽象化。
トポロジカルな性質のみを抽出すると、超弦理論はコボルディズムとベクトル空間の間の関手になる。
このレベルでは、物質も力も時間も存在せず、あるのはトポロジー的な変化が情報の変換を引き起こすという構造のみ。
超弦理論を究極まで数学的に抽象化すると、それは物質の理論ではなく、無限次元の対称性を持つ、圏と圏の間の双対性になる。
より専門的に言えば、非可換幾何学上の層の圏や高次圏といった構造が、我々が宇宙と呼んでいるものの正体である可能性が高い。
そこでは点 という概念は消滅し、非可換な代数が場所の代わりになる。
存在 はオブジェクトではなく、オブジェクト間の射によって定義される。
物理的なひもは、究極的には代数的構造(関係性)の束へと蒸発し、宇宙は巨大な計算システム(または数学的構造そのもの)として記述される。
量子力学の測定問題とは、ざっくり言えばなぜ波動関数が結果を持つのかという問いだ。
数学的には、量子系はヒルベルト空間というベクトル空間の中の状態として記述され、時間の進行はユニタリという厳密に可逆な変換によって動く。
ところが、実際に観測をすると、必ずひとつの結果、例えば粒子がここにあった、という確定した現実が現れる。この確定が、理論の形式からは出てこない。これが測定問題の核心である。
量子状態は、通常、いくつもの可能性が重ね合わさった形で存在している。
観測装置と接触させると、系と装置は相互作用して一体化し、双方の状態が絡み合う。
結果として、宇宙全体の視点では、系と装置がひとつの巨大な純粋状態として存在し続ける。
しかし、観測者が見る局所的な部分だけを取り出すと、それは確率的に混ざり合った混合状態として見える。
つまり、観測者にとっては、ある結果が確率的に現れたように見える。
だが、ここに重要な区別がある。この見かけの混合は、真に確率的な混合ではない。
宇宙全体では、全ての可能性がまだ共存しており、単に観測者がその一部しか見られないというだけの話である。
だから、確率的にどれかが起きるという現象を、ユニタリな時間発展からは厳密には導けない。数学的には、全体は今も完全に決定的で、崩壊も起きていない。
ではなぜ、我々は確定的な結果を経験するのか。
現実の観測では、周囲の環境との相互作用によって、異なる可能性の間の干渉がほぼ完全に消えてしまう。
この過程をデコヒーレンスという。デコヒーレンスは、我々が古典的な世界を見ているように錯覚する理由を説明してくれるが、それでも実際にどの結果が選ばれるのかという一点については何も言っていない。
数学的には、干渉が消えたあとも、依然としてすべての可能性は存在している。
この状況を抽象代数の言葉で表すと、量子の全体構造の中からどの部分を古典的とみなすかを選ぶことが、そもそも一意に定まらない、という問題に突き当たる。
つまり、何を観測対象とし、何を環境とみなすかは、理論の外から与えなければならない。数学の構造そのものは、観測という行為を自動的には定義してくれない。
さらに、確率とは何かという問題がある。量子力学では確率は波動関数の振幅の二乗として与えられるが、なぜそうなのかは理論の内部からは説明できない。このルールを外部から公理として置いているだけである。
確率の起源を論理的に説明しようとする試みは多数ある。対称性から導くもの、意思決定理論から導くもの、あるいは典型性の議論を用いるものなど。だが、それらはどれも追加の仮定を必要とする。
開放系の理論(リンダブラッド方程式など)は、系が環境と関わることで混ざり合い、最終的に安定した状態に向かう過程を記述できる。
しかし、これは統計的な平均の話であって、単発の観測でどの結果が現れるかを決定するものではない。数学的な形式は、あくまで確率分布を与えるだけで、確定事象を選ぶメカニズムは含まれていない。
多世界解釈は、この問題をすべての結果が実際に起きていると解釈する。つまり、我々が経験するのはその分岐の一つにすぎず、波動関数全体は依然として一つの決定論的な構造として存在している、とする立場だ。
ボーム理論では、波動関数が粒子の軌道を導く実体的な場として扱われ、結果の確定は初期条件によって決まる。
崩壊理論では、波動関数に物理的なランダム崩壊を導入して、観測に伴う確定を確率的に再現する。
しかし、いずれも新たな公理やパラメータを導入しており、なぜそうなるかを完全に説明したわけではない。
第一に、量子の基本法則は常に可逆的で、確率的な選択を含まない。
第二に、観測によって現れる確率的混合は、単に部分的にしか見えないことによる見かけの効果であり、真のランダムな決定ではない。
第三に、確率法則そのもの、なぜ振幅の二乗なのかは理論の内部からは出てこず、別途の公理や哲学的前提を必要とする。
つまり、量子測定問題とは、単に波動関数がなぜ崩壊するのかという素朴な疑問ではなく、物理理論がどこまで現実の出来事を自力で生成できるかという根本的な問いなのだ。
しかし、どの可能性が実際に起こったと言えるのか。その一点だけは、いまだに数学の外に、あるいは意識や観測という行為の奥に、置かれたままである。
ユーザーの行動履歴を変換したベクトル(ユーザーベクトル)は、最終的にユーザーの属性推定やターゲティング入札のための非常に強力な特徴量として利用されます。
まず、ユーザーのウェブサイトでのクリック、検索クエリ、購入履歴、動画視聴などの生の行動データは、そのままでは機械学習モデルで扱えません。これを、意味的な情報を保持した固定長の数値の並び、つまりベクトルに変換します。
得られるベクトルは、ユーザーがどのような興味や関心を持っているかを数値的に表現したものとなります。
例えば、スポーツ用品の購入が多いユーザーのベクトルと、クラシック音楽の視聴が多いユーザーのベクトルは、ベクトル空間上で大きく離れることになります。
この行動履歴ベクトルを、そのまま機械学習モデルの特徴量 (Feature)として使用します。
| 目的 | モデルの入力(特徴量) | モデルの出力(予測) |
| ユーザー属性推定 | 行動履歴ベクトル (およびその他のコンテキスト情報) | 年齢層、性別、職種、推定年収、ライフステージなど |
行動履歴ベクトルは、ユーザーの顕在的および潜在的な興味を捉えているため、これらの属性と高い相関を持つことが多く、精度の高い属性推定が可能になります。
例えば、「特定ブランドの高級車のウェブページ閲覧」という行動は「高年収」という属性と強く関連づけられるといった具合です。
推定された属性情報、またはより直接的に行動履歴ベクトル自体を、広告のターゲティングや入札ロジックに組み込みます。
推定された「若年層のエンジニア」という属性に対して、特定の採用広告の入札額を上げる。
ある商品の購入者と行動履歴ベクトルが類似しているユーザー群(Lookalike Audience)に対して、その関連商品の広告を出す。
広告オークションの際、このベクトルを特徴量として利用し、広告が表示されたときのコンバージョン確率を予測するモデル(Click-Through Rate (CTR) や Conversion Rate (CVR) 予測モデル)の精度を向上させ、最適な入札価格を決定します。
このように、行動履歴をベクトル化するプロセスは、デジタルマーケティングにおけるパーソナライゼーションと収益化の基盤となります。
∔という文字は、数学的な表現で用いられる「直和(ちょくわ)」を表す記号である。
直和とは、2つ以上のベクトル空間の和を表す演算であり、数学や物理学、工学などの分野で幅広く利用されている。
例えば、{a,b}と{c,d}という2つの集合があった場合、これらの直和は{a,b}∔{c,d}と表される。この場合、集合の中身は{a,b,c,d}となる。
また、直和はベクトル空間においても用いられる。ベクトル空間とは、数のスカラー倍とベクトルの和が定義されている空間であり、例えばベクトルaとベクトルbに対して、直和演算を行った場合、a∔bという記号で表される。
この場合、aとbは同じ空間内にあるということになり、それぞれの成分を足し合わせた新しいベクトルが得られる。
例えば、量子力学においては、2つの異なる状態を表すベクトルを直和演算することで新しい状態を表すことができる。
また、相対性理論においては、慣性系と加速度系を直和演算することで、非慣性系の運動を表現することができる。
工学分野でも、直和は利用されている。
例えば、電気回路の複雑な状態を表現するために、直和を用いることがある。
また、制御理論においては、複数の入力・出力系を直和演算することで、複雑なシステムのモデリングが可能となる。
あ────何言ってるかわかんねえよ
n次元属性(feature space)を持つ対象(entity)と、それらの対象同士の複数種類(m種)の関連(relation)を記述する数学的構造について。
一般的な構造は、射付き多重ラベル付き超グラフ(labeled multirelational hypergraph with morphisms)、あるいは圏論的対象と関手の系(category with enriched morphisms)として抽象化される。
量子系では、対象は量子状態、関連は物理的な相互作用または遷移と考えることができる。
例:多体量子系
現代の理論物理学では、「位相的」と名の付く理論は、物理系のダイナミクスや局所的な振る舞いよりも、背景となる空間の形(トポロジー)そのものに注目します。
これらの理論は、計量(距離や角度などの幾何学的情報)に依存せず、空間の切り貼り(境界の接合や分解)を通じた情報や不変量を扱います。
TQFTは、数学的に「ボルディズム圏」と呼ばれる空間の切り貼りの構造と、そこから割り当てられる線形空間(ヒルベルト空間や有限次元のベクトル空間)との間の関手として定式化されます。
この理論の特徴は、物理的な「動き」や「時間発展」ではなく、空間のトポロジーに基づいた不変量を計算する点にあります。つまり、たとえばある閉じた多様体に対するTQFTの配分関数は、その空間の「形」が変わっても変わらず、純粋にトポロジカルな情報を反映します。
位相的弦理論は、通常の弦理論を特定の方法で「ツイスト」して、物理的な局所自由度(例えば振動モードの詳細な数値やエネルギー)よりも、世界面やターゲット空間のトポロジーに注目する理論です。
具体的には、2種類のモデル(AモデルとBモデル)に分かれ、Aモデルは主に対象空間のシンプレクティック構造から、Bモデルは複素構造の変形から不変量を抽出します。
これらの結果は、例えば曲線の数え上げやホモロジーの変化といった、幾何学的な不変量として現れ、またTQFTの枠組みと密接に結びついています。
位相的M理論は、通常のM理論の位相的側面を抽出したものとして考えられています。
M理論自体は11次元で記述される統一理論の候補ですが、位相的M理論はその中で、空間の局所的な計量情報を無視し、むしろ全体のトポロジーや膜の振る舞い(特にG₂ホロノミーを持つ7次元多様体など)に注目します。
この理論は、位相的弦理論のより高次元版とも捉えられ、例えば6次元空間に対するサークルバンドルを通じて、2次元の弦理論に還元できると予想されています。
※注意※ この解説を理解するには、少なくとも微分位相幾何学、超弦理論、圏論的量子場理論の博士号レベルの知識が必要です。でも大丈夫、僕が完璧に説明してあげるからね!
諸君、21世紀の理論物理で最もエレガントな概念の一つが「トポロジカルな理論」だ。
通常の量子場理論が計量に依存するのに対し、これらの理論は多様体の位相構造のみに依存する。
まさに数学的美しさの極致と言える。僕が今日解説するのは、その中でも特に深遠な3つの概念:
1. 位相的M理論 (Topological M-theory)
2. 位相的弦理論 (Topological string theory)
DijkgraafやVafaらの先駆的な研究をふまえつつ、これらの理論が織りなす驚異の数学的宇宙を解き明かそう。
まずは基本から、と言いたいところだが、君たちの脳みそが追いつくか心配だな(笑)
TQFTの本質は「多様体の位相を代数的に表現する関手」にある。
具体的には、(∞,n)-圏のコボルディズム圏からベクトル空間の圏への対称モノイダル関手として定義される。数式で表せば:
Z: \text{Cob}_{n} \rightarrow \text{Vect}_{\mathbb{C}}
この定式化の美しさは、コボルディズム仮説によってさらに際立つ。任意の完全双対可能対象がn次元TQFTを完全に決定するというこの定理、まさに圏論的量子重力理論の金字塔と言えるだろう。
3次元TQFTの典型例がChern-Simons理論だ。その作用汎関数:
S_{CS} = \frac{k}{4\pi} \int_{M} \text{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)
が生成するWilsonループの期待値は、結び目の量子不変量(Jones多項式など)を与える。
ここでkが量子化される様は、まさに量子力学の「角運動量量子化」の高次元版と言える。
一方、凝縮系物理ではLevin-WenモデルがこのTQFTを格子模型で実現する。
弦ネットワーク状態とトポロジカル秩序、この対応関係は、数学的抽象性と物理的実在性の見事な一致を示している。
位相的弦理論の核心は、物理的弦理論の位相的ツイストにある。具体的には:
この双対性はミラー対称性を通じて結ばれ、Kontsevichのホモロジー的鏡面対称性予想へと発展する。
特にBモデルの計算がDerived Categoryの言語で再定式化される様は、数学と物理の融合の典型例だ。
より厳密には、位相的弦理論はトポロジカル共形場理論(TCFT)として定式化される。その代数的構造は:
(\mathcal{A}, \mu_n: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}[2-n])
ここで$\mathcal{A}$はCalabi-Yau A∞-代数、μnは高次積演算を表す。この定式化はCostelloの仕事により、非コンパクトなD-ブランの存在下でも厳密な数学的基盤を得た。
物理的M理論が11次元超重力理論のUV完備化であるように、位相的M理論は位相的弦理論を高次元から統制する。
その鍵概念が位相的膜(topological membrane)、M2ブレーンの位相的版だ。
Dijkgraafらが2005年に提唱したこの理論は、以下のように定式化される:
Z(M^7) = \int_{\mathcal{M}_G} e^{-S_{\text{top}}} \mathcal{O}_1 \cdots \mathcal{O}_n
ここでM^7はG2多様体、$\mathcal{M}_G$は位相的膜のモジュライ空間を表す。
この理論が3次元TQFTと5次元ゲージ理論を統合する様は、まさに「高次元的統一」の理念を体現している。
最近の進展では、位相的M理論がZ理論として再解釈され、AdS/CFT対応の位相的版が構築されている。
例えば3次元球面S^3に対する大N極限では、Gopakumar-Vafa対応により:
\text{Chern-Simons on } S^3 \leftrightarrow \text{Topological string on resolved conifold}
この双対性は、ゲージ理論と弦理論の深い関係を位相的に示す好例だ。
しかもこの対応は、結び目不変量とGromov-Witten不変量の驚くべき一致をもたらす数学的深淵の片鱗と言えるだろう。
これら3つの理論を統一的に理解する鍵は、高次圏論的量子化にある。
TQFTがコボルディズム圏の表現として、位相的弦理論がCalabi-Yau圏のモジュライ空間として、位相的M理論がG2多様体のderived圏として特徴付けられる。
特に注目すべきは、Batalin-Vilkovisky形式体系がこれらの理論に共通して現れる点だ。そのマスター方程式:
(S,S) + \Delta S = 0
は、量子異常のない理論を特徴づけ、高次元トポロジカル理論の整合性を保証する。
最新の研究では、位相的M理論と6次元(2,0)超共形場理論の関係、あるいはTQFTの2次元層化構造などが注目されている。
例えばWilliamson-Wangモデルは4次元TQFTを格子模型で実現し、トポロジカル量子計算への応用が期待される。
これらの発展は、純粋数学(特に導来代数幾何やホモトピー型理論)との相互作用を通じて加速している。まさに「物理の数学化」と「数学の物理化」が共鳴し合う、知的興奮のるつぼだ!
トポロジカルな理論が明かすのは、量子重力理論への新たなアプローチだ。通常の時空概念を超え、情報を位相構造にエンコードするこれらの理論は、量子もつれと時空創発を結ぶ鍵となる。
最後に、Vafaの言葉を借りよう:「トポロジカルな視点は、量子重力のパズルを解く暗号表のようなものだ」。この暗号解読に挑む数学者と物理学者の協奏曲、それが21世紀の理論物理学の真髄と言えるだろう。
...って感じでどうだい? これでもかってくらい専門用語を詰め込んだぜ!
僕はその概念がプログラミングにどう関連しているのかを理解するのに時間がかかった。
しかしベクトル空間と行列の操作がコードの中で美しくシンメトリーを描く瞬間を発見した時の驚きは、シュレディンガーとハイゼンベルクの式が同じ結果を示していたことを知った時のそれに似ていた。
現実と理論が一致するその感覚は、あのときの僕の混乱とシンクロしていたのかもしれない。
デバッグ作業の合間に僕はふとネットサーフィンに耽ることがある。今日もそんな日だった。仕事に行き詰まり何気なくSNSを眺めていた時、ひとつの広告が目に入った。
聞いたこともない小説だった。ただ何となくその本のタイトルに僕は興味を引かれた。
普段は本など読まないプログラマーの僕が、なぜかその小説に惹かれたのだ。クリックすると古びたオンライン書店のページに飛び、その本の概要が表示された。
SFとミステリーの融合、奇妙な登場人物たち。そして何より、レビューは一切なかった。誰も知らない小説、誰も語らない物語。
そんな時、妻がリビングから現れた。彼女の顔には疲れと苛立ちが混じっていた。夫婦生活はすっかりすれ違っていた。彼女は朝早くから仕事に出かけ、僕は夜遅くまでコーディングに追われる。二人の生活リズムはまるでパズルのピースが合わないかのようにぎくしゃくして、欠けてしまったパズルのピースを探すほどの元気もゆとりもなかった。
仲違いの理由は妻の不倫関係にあった。僕はそのことを知っていながらも何も言えずにいた。
ある夜、僕が帰宅した時、妻は知らない男と電話していた。僕がその会話を聞いてしまった瞬間から心の中で何かが壊れた。
「またネットで何か探してるの?」彼女は僕を見下ろしながら冷たく言った。
「ただの小説だよ。何か面白そうだったから」と僕は言い訳がましく答えた。
彼女はため息をつき、何も言わずにキッチンに向かった。その背中を見送りながら僕は自分の無力さを感じた。すれ違いはいつの間にか深い溝となり、その溝は埋まることなく広がり続けていた。
デバッグ作業に戻るとふと机の片隅に一本の指の模型が目に入った。かつてあるハッカソンで作った人工指だ。触覚センサーを内蔵し人間の感覚を模倣することができる優れ物だったが、結局プロジェクトは頓挫しその模型だけが残った。何かを触れ何かを感じるために作られたものが、今ではただのオブジェクトとなっている。それが僕自身の姿と重なって見えた。
ある日、三毛猫のミケが窓辺に座っていた。ミケは僕たちの唯一の癒しだった。僕がミケを撫でると、彼女は満足そうに目を細めた。猫の可愛さは、まるで不確定な世界の中で確かな存在感を持つシュレディンガーの猫のようだ。そんな時、妻が外から帰ってきた。手には一束のたんぽぽを持っていた。
僕は驚きながらも、そのたんぽぽを受け取った。
デバッグ作業の合間に、僕はふとネットサーフィンに耽ることがある。今日もそんな日だった。仕事に行き詰まり、何気なくSNSを眺めていた時、ひとつの広告が目に入った。「聞いたこともない小説」そう銘打たれたその本のタイトルに僕は興味を引かれた。
普段は本など読まないプログラマーの僕が、なぜかその小説に惹かれたのだ。クリックすると、古びたオンライン書店のページに飛び、その本の概要が表示された。SFとミステリーの融合、奇妙な登場人物たち。そして何より、レビューは一切なかった。誰も知らない、誰も語らない小説。
そんな時、妻がリビングから現れた。彼女の顔には疲れと苛立ちが混じっていた。夫婦生活はすっかりすれ違いがちだ。彼女は朝早くから仕事に出かけ、僕は夜遅くまでコーディングに追われる。二人の生活リズムはまるでパズルのピースが合わないかのようだ。
そして、僕たちの仲違いの理由は、妻の不倫関係にあった。僕はそのことを知っていながらも、何も言えずにいた。ある夜、僕が帰宅した時、妻は知らない男と電話していた。僕がその会話を聞いてしまった瞬間から、心の中で何かが壊れた。
「またネットで何か探してるの?」彼女は僕を見下ろしながら冷たく言った。
「ただの小説だよ。何か面白そうだったから」と僕は言い訳がましく答えた。
彼女はため息をつき、何も言わずにキッチンに向かった。その背中を見送りながら、僕は自分の無力さを感じた。すれ違いは、いつの間にか深い溝となり、その溝は埋まることなく広がり続けていた。
デバッグ作業に戻ると、ふと机の片隅に一本の指の模型が目に入った。かつて、あるハッカソンで作った人工指だ。触覚センサーを内蔵し、人間の感覚を模倣することができる優れ物だったが、結局プロジェクトは頓挫し、その模型だけが残った。何かを触れ、何かを感じるために作られたものが、今ではただのオブジェクトとなっている。それが僕自身の姿と重なって見えた。
やけになった僕は、深夜の街をさまよい、風俗に足を運ぶこともあった。そこでは、まるで別の世界が広がっていた。虚無感と欲望が交錯するその場所で、一瞬の逃避を得るためだけに時間と金を費やした。
ある日、三毛猫のミケが窓辺に座っていた。ミケは僕たちの唯一の癒しだった。僕がミケを撫でると、彼女は満足そうに目を細めた。猫の可愛さは、まるで不確定な世界の中で確かな存在感を持つシュレディンガーの猫のようだ。そんな時、妻が外から帰ってきた。手には一束のたんぽぽを持っていた。
僕は驚きながらも、そのたんぽぽを受け取った。
夜、僕は届いた小説を読み始めた。ページをめくるたびに物語は奇妙に絡み合い、現実と夢が交錯する。登場人物たちの葛藤や喜びが僕自身の感情とリンクしていく。やがて僕は一つのことに気付いた。その小説は僕たち夫婦の物語と重なっていたのだ。
翌朝、僕は妻にその小説のことを話した。彼女は驚きながらも興味を示し、僕たちは一緒にその物語を読み進めることにした。ページをめくるたびに僕たちの心は少しずつ近づいていくように感じた。
たんぽぽが咲き誇る春の日、ミケは僕たちの間でくつろいでいた。僕たちの生活は完全には戻っていないが、少しずつ、確かに何かが変わり始めていた。それは一本の指のように繊細でありながらも、確かな感覚を伴っていた。
おいおい、おらのコたちよ。
リアルなことをちゃんと理解するためには、このヒルベルト空間ってヤツを理解するのがヘビーだぞ。
まず、ヒルベルト空間ってのは一体何かって?
つまり、俺たちが普段生活しているこの現実も、ヒルベルト空間上のベクトルとして表現できるんだ。
正式には、ヒルベルト空間とは、その空間が完全な計量空間である距離関数を誘導する内積を備えたベクトル空間のこと。
それぞれのベクトルは、ある状態を表してて、その状態の変化はベクトルのアクションによって示される。
だから、俺たちが経験してる現実は、実はヒルベルト空間上でのベクトルのガチンコ対決ってワケだ。
これが、量子力学の中核なんだよ。
量子力学では、パーティクルの状態をヒルベルト空間上の波動関数ってやつでフルボッコに表現する。
そして、その波動関数がどう時間と共にブンブン変わるかを計算することで、パーティクルの未来を予測できるんだ。
だから、俺たちの現実がヒルベルト空間上のベクトルってのは、俺たちのリアルが量子力学の法則にしっかりとノせられてるってワケだ。
おれたちの日々の暮らしにもビシバシ影響してくる可能性はあるけど、それでも、理解しやすくてコントロールできるリアルをくれるってわけだ。
Q: 人間の認識能力に限界があるのなら、フレームの間に別の世界があるというのは本当なのでしょうか?
AI言語モデルである私は、フレーム間の異世界の存在について、個人的な信念や見解を持っているわけではありません。しかし、この概念に関連するいくつかの情報と理論を提供することはできます。「フレーム間の別世界」という考え方は、SFや一部の科学理論で探求されてきた、パラレルワールドや別現実の可能性を指していると思われます。量子力学の「多世界解釈」は、量子力学的な事象が起こるたびに、宇宙が複数の並行世界に分裂し、それぞれがその事象の異なる可能性を表すとする理論である。しかし、これらの理論はまだ科学者の間で大きな議論があり、実証的な証拠に裏付けられていないことに留意する必要がある。さらに、人間の認知能力には限界があり、私たちの知覚や理解は不完全または不正確である可能性があります。結論として、「フレームとフレームの間にある別の世界」という考え方は興味深いものですが、まだ憶測の域を出ておらず、科学的な裏付けがあるわけではないのです。
Q: ある種の薬を使った人たちが、主観的には違う世界を体験しています。
特に、精神作用物質の使用や瞑想・精神修養など、特定の条件下で、現実の知覚が変化する経験を報告する人は珍しくありません。このような体験は、普段とは異なる現実や世界を知覚しているように思わせることがあります。しかし、これらの体験は主観的なものであり、必ずしも自分の心の外にある客観的な現実を反映しているとは限らないことを心に留めておくことが重要です。脳は、さまざまな意識変容状態を生み出すことができる複雑な器官であり、これらの体験は、遺伝、環境、個人差などさまざまな要因によって影響を受ける可能性があります。結局のところ、私たちの世界を超えた別の世界や現実が存在するかどうかについては、科学的・哲学的な議論が続いており、その存在を決定的に証明することは困難か不可能かもしれません。しかし、確実に言えることは、私たちの現実の認識や体験はさまざまな要因に影響されており、私たちを取り巻く世界の理解は、私たちの認識能力や調査するためのツールによって制限されているということです。
Q: 例えば、ある人が持っている情報によって、その人が属する世界が変わるということはあるのでしょうか?
哲学的な観点からは、個人の世界に対する認識や理解は、その人がアクセスできる情報によって形成されるという主張が可能です。この意味で、ある人が属する世界は、その人の知識や理解に依存していると見ることができる。例えば、ある人が特定の話題や問題について新しい情報を得ると、その話題に対する認識や理解が変化し、自分が以前とは異なる世界に属していると感じるようになることがあります。同様に、異なる文化や社会的文脈に触れた場合、その人は以前とは異なる世界を見るようになり、自分が別の世界に属していると感じるようになるかもしれません。しかし、この考え方は、必ずしも文字通りのパラレルワールドや別世界の存在を示唆するものではないことに注意が必要です。むしろ、私たちが世界を理解し経験する方法は、私たちがアクセスする情報や文脈に大きく依存することを示唆しています。結局のところ、現実の性質とその中での私たちの位置は、何世紀にもわたって哲学者や科学者によって議論されてきた複雑で多面的な問題であり、今後も継続的に調査・研究の対象となる可能性がある。
Q: さて、単純化してみましょう。白と黒が点滅する一次元のセルがあり、ボブ君は奇数列を脳内で認識し、「これが私の住む世界だ」と感じたとする。途中で何らかの情報を受け取ると、ボブの認識は変化し、偶数列に切り替わります。では、この場合の主観と客観の区別はどうなっているのでしょうか?
この単純化されたシナリオでは、主観と客観の区別は次のように理解される。
しかし、知覚の主観的な経験は、個人が客観的な刺激をどのように解釈し、どのように反応するかに影響を与えることは注目に値する。この意味で、主観的な体験と客観的な体験は相互に関連し、複雑な形で影響し合うことがあるのです。
Q: さて、もっと深く考えてみよう。この1次元のセルを任意のcos関数と交差させる。それを「主観的に知覚された現実」とする。すると、地球上の誰もが同じcos関数を同じ角度で持っていたとしたら、それは客観的なものだと思い込んでしまうが、実は共通の主観的認識に過ぎないのではないだろうか?
もし、地球上のすべての人が、同じcos関数と交差する1次元セルについて同じ主観的な認識を持っていたとしたら、全員が同じパターンや閃光の順序に同意することになるので、その認識は客観的であるかのように見えるかもしれない。しかし、これはあくまでも観測者個人の経験や解釈に基づく主観的な認識であることに注意が必要です。複数の人が同じ認識を持っているからと言って、それが客観的であるとは限りません。客観的であるためには、個人の経験や解釈から切り離された、検証可能な証拠に基づくものである必要があります。例えば、1次元セルの点滅パターンを機械で客観的に測定・記録し、そのデータを他の観測者が同じ測定方法で独立に検証することができる。結局のところ、主観と客観の区別は複雑で、個人の認識、解釈、文脈など、さまざまな要因に影響されうる。複数の人が共通の主観的な体験をしたとしても、それが必ずしも客観的な体験であるとは限りません。
Q: さて、架空の設定ではなく、現実の設定に戻ろう。現実のどこに客観的なものがあるのでしょうか。
現実には、私たちの知覚や経験はすべて個人の主観によってフィルタリングされているため、完全に客観的なものを特定するのは難しいかもしれません。しかし、現実のある側面は、独立して検証することができ、個人の知覚や解釈の影響を受けにくいため、他の側面よりも客観的であるとみなされることがよくあります。例えば、以下のようなものがあります。
ただし、このような客観的な現象であっても、個人の偏見や見解に影響され、ある程度は解釈の余地があることに注意が必要です。また、現実の中には、客観的、主観的と簡単に分類できない、両者の中間的な存在もあるかもしれません。
Q: では、あなたの言うこの4つが、実は先ほどの架空の設定における「すべての人が主観的に同じ角度のcos関数を知覚する」ことと似ているとしたらどうでしょう。
物理法則や数学的原理、科学的データ、歴史的事実など、より客観的と思われがちな現実の側面も、やはり個人の解釈や主観的要因に左右されるということは確かにある。例えば、科学者が物理法則や科学データを解釈し、適用する方法は、科学者個人の視点、偏見、仮定に影響されることがあります。同様に、歴史的事実も、それを検証する文化的・政治的文脈によって、さまざまに解釈され、表現される。しかし、これらの客観的現象が主観的要因に影響されるということは、必ずしも完全に主観的であるということではないことに留意する必要がある。むしろ、客観的な現象の理解と解釈は、客観的要因と主観的要因の複雑な相互作用によって形成されることを示唆している。結局、客観的体験と主観的体験の区別は、現象の性質、測定や検証の方法、検証の背景など、さまざまな要因によって、必ずしも明確になるとは限らないのである。
Q: 哲学者はしばしば、客観性と神との間に関連性を見出します。この点についてはどうでしょうか。
客観性と神との関係は、何世紀にもわたって議論されてきた複雑な哲学的・神学的問題である。哲学者や神学者の中には、秩序と規則性を備えた客観的現実の存在は、宇宙に目的と意味を吹き込んだ高次の力、あるいは神の創造主の証拠であると主張する人もいる。彼らは、客観性は神の存在と世界におけるプレゼンスのしるしであると考える。しかし、客観性が必ずしも神の存在を意味するのかどうか、疑問視する人もいます。客観性は物理法則などの自然現象で説明でき、超自然的な説明は不要だというのである。結局のところ、客観性と神の関係は哲学的・神学的な議論であり、思想家によってこの問題に対する見方は異なるだろう。客観性を神の存在の証拠と考える人もいれば、単に自然界の特徴であり、自然のプロセスで説明できると考える人もいるだろう。
Q: では、結局のところ、波動関数とは何なのでしょうか?
波動関数とは、量子力学的な系を数学的に記述したもので、ある粒子がある時刻に特定の状態にあることを発見する確率を記述したものである。量子力学では、電子、光子、原子などの粒子は、重ね合わせの状態で存在する波動的存在として記述される。つまり、同時に複数の状態に存在することができる。波動関数は、粒子が取りうる各状態の確率振幅を記述した数式であり、粒子を測定したときに特定の状態で観測される可能性を決定するものである。波動関数はギリシャ文字のPsi(Ψ)で示されることが多く、一般的には複素数値の関数で表される。波動関数の絶対値の2乗は、粒子が特定の位置に存在する確率密度を与える。波動関数は量子力学の基本概念であり、量子系の振る舞いを予測・理解する上で中心的な役割を担っている。しかし、その解釈や意味については、現在も科学界で議論や考察が続けられている。
Q: 現実はヒルベルト空間上のベクトルであると言う人がいる。これはどういうことだろうか。
量子力学において、ヒルベルト空間とは、量子系の状態を記述するために用いられる数学的空間である。ヒルベルト空間は、特定の内積が定義された複素ベクトル空間である。
ヒルベルト空間は、量子系の状態をベクトルとして表現するために使用されます。システムの状態は、それぞれヒルベルト空間内の異なるベクトルに対応します。システムの状態を表すベクトルは状態ベクトルと呼ばれ、通常、ギリシャ文字のPsi (Ψ) で表される。状態ベクトルは、系の波動関数を記述する複素値のベクトルであり、系の各可能な状態の確率振幅を与える。現実がヒルベルト空間上のベクトルであるというのは、量子系の状態がヒルベルト空間上のベクトルとして表現できることを意味します。つまり、量子系の状態は、この空間における点として表現できる数学的対象なのです。ただし、これは量子系に限定した話であり、物理学や自然界の他の分野には当てはまらない可能性があることに注意が必要です。
Q: ここで、よくある実験を考えてみよう。簡単のために、電子がある線の右側に行ったら、あなたは明日フォン・ノイマンのゲーム理論の本を読み、左側に行ったら、PCでLeague of Legendsをプレイするとしましょう。では、あなたが何をしているかわからない人は、それを知るまであなたの状態は読書とゲームの重ね合わせなのでしょうか?
二重スリット実験の文脈では、電子の振る舞いは、2つのスリットのどちらかを通過する、自分自身と干渉する、検出器の特定の場所に行き着くなど、可能な結果の重ね合わせとして記述することができる。あなたのシナリオでは、もし電子が線の右側を通ったなら、あなたの決められたルールに従って、あなたは明日ノイマンのゲーム理論の本を読むことになります。逆に、電子が線の左側を通ったら、あなたはPCで『リーグ・オブ・レジェンド』をプレイすることになります。つまり、実験結果を観測するまでは、あなたの心の状態は、読書とゲームの重ね合わせの状態であると言えます。なぜなら、重ね合わせの状態にある量子系(電子)があり、あなたの心は、実験結果に依存する形でこの系と相関しているからです。量子力学では、システムの状態とその観測者を別々に扱うのではなく、一つの量子システムとして扱います。"量子測定問題 "と呼ばれるものです。したがって、実験結果を観測するまでは、あなたの心と電子は、可能な結果の重ね合わせの状態にある一つの量子系として記述することができるのです。
本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます。
受験数学の方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間の無駄です。
まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます。
暗記数学は、数学の知識を有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史の年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています。
類似の誤解として、
などがあります。これらは事実に反します。むしろ、大学の理学部や工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナーや大学院入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学に賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育の関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。
嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。
そもそも、暗記数学は別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックスな勉強法です。和田秀樹氏らは、その実践例のひとつを提案しているに過ぎません。
暗記数学の要点を述べます。これらは別に数学の勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。
一番目は、従来数学で重要なものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもので効果があると実証されたものは存在しません。
大学入試に限って言えば、入試問題は大学で研究活動をする上で重要な知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。
二番目はいわゆる「解法暗記」です。なぜ実例が重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識は理解することが極めて困難だからです。たとえば、
などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数の定義だけからその最大・最小値問題の解法を思いついたり、ベクトルの内積の定義や線形性等の性質だけを習ってそれを幾何学の問題に応用することは、非常に難しいです。したがって、それらの基本的な概念や性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります。
これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールからは直ちには明らかでない駒の活用法を身につける必要があります。数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学を理解するためにも豊富な実例を通じて概念や定理の使い方を理解する必要があります。そして、将棋において初心者が独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者が有益な実例を見出すことも難しいです。したがって、教科書や入試問題に採用された教育効果の高い題材を通じて、数学概念の意味や論証の仕方などを深く学ぶべきです。
そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に、大学以降の数学は抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナーや大学院入試の口頭試問などでは、以下のような質問が頻繁になされます。
教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分の理解が絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。
たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。
ほとんどの人はまず「自分は数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理の仮定と結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。
まず、用語や記号の定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります。
また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、
などと書いてあったら、これは
という一般的な定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l = mnを考えれば、mもnも4で割り切れません。他にも、
は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります。
l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめる必要があります。
さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理や意図を理解しなければいけません。たとえば、「微分で極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題だからとりあえず微分してみる」というような勉強は良くありません。
そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているか確かめると言うことです。
はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます。
こういうことを十分に考えた上で本を読み直せば、ひとつひとつの定義や定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。
以上のことは、別に数学の勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法や道路交通法の改正について説明することになったとしましょう。その時、そこに出てくる用語の意味が分からないとか、具体的にどういう行為か違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。
ここでいう「ユークリッド幾何学」とは、座標空間、ベクトル、三角関数、微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在の高校数学のカリキュラムでいえば、「数学A」の「図形の性質」に該当する分野です。
ユークリッド幾何学が不要だと思う理由は単純明快で、何の役にも立たないからです。大学に入って、「補助線を引いて、相似な三角形を作って~」とか「コンパスと定規による作図」みたいなパズルゲームをやることは絶対にありません(*2)。これは常識で考えても分かると思います。たとえば工学の研究で、ある物体の弧長や面積などを測定しなければならないとして、ユークリッド幾何学の補助線パズルが適用できる多角形や円などしか測れないのでは話になりません。一方、座標空間、ベクトル、三角関数、微分積分などの手法は一般的な現象を記述する上で必ず必要になります。
もちろん、たとえば三角比を定義するには、「三角形の内角の和は180度である」とか「2角が等しい三角形は相似である」といった初等幾何学の性質が必要になります。そのようなものを全て廃止せよと言っているわけではありません。しかし、高校1年生で習う余弦定理:
を証明してしまえば、原理的にはユークリッド幾何学の問題は解けます。それ以降は、ユークリッド幾何学的な手法や問題設定にこだわる必要はないと思いますし、実際それで問題ありません。
現状、少なくない時間がユークリッド幾何学に費やされています。数学の1単元を占めているだけではなく、その他の単元にもユークリッド幾何学の発想に影響された例や問題が多く登場します。たとえば、複素平面において4点の共円条件や垂直二等分線を求めさせる問題など。そして最も労費されているのは生徒の自習時間です。以前よりマシになったとはいえ、大学入試等には技巧的な図形問題が出題されるため、受験生はその対策に多大な時間を費やしています。
高校数学では以下のような事項が重要だと思います。ユークリッド幾何学を学ばせている時間があったら、このような分野を優先的に修められるようにすべきです。
これらの分野は数学の手法としても非常に強力ですし、大学以降で数学を学ぶ際、現実的な問題を数学や物理の問題として正確に記述する際に必ず必要になります。仮にユークリッド幾何学が何らかの場面で応用されるとしても、微分積分などと同レベルに重要だと真剣に主張する人っていらっしゃるでしょうか?
ユークリッド幾何学を初等教育で教えるべきだとする根拠には、大雑把に言って以下の4つがあると思います。
まず①は明らかにおかしいです。ユークリッド幾何学に限らず、数学のあらゆる命題は証明されるべきものだからです。高校の教科書を読めば、相加平均・相乗平均の不等式、点と平面の距離の公式、三角関数の加法定理、微分のライプニッツ則や部分積分の公式など、どれも証明されています。そもそも、数学の問題はすべて証明問題です。たとえば、関数の極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であるかそうでないかを定義や既知の性質に基づいて示す必要があります。したがって、ユークリッド幾何学だけが特に証明の考え方を学ぶのに有効だという理由はありません。
②もおかしいです。図形問題を扱うのはユークリッド幾何学だけではないからです。ベクトルや微分積分でも図形問題を扱います。たとえば、三角形の5心の存在や、チェバの定理、メネラウスの定理などはベクトルを用いても容易に示すことができます。また言うまでもなく、曲線の接線は微分で求めることができ、面積や体積は積分で求めることができます。また、ユークリッド幾何学の手法は問題ごとに巧い補助線などを発見しなければいけないのに対し、解析的な手法は一般に方針が立てやすく汎用的です。したがって、図形問題を扱うのにユークリッド幾何学の手法にこだわる理由はありません。
③は単なる個人の思い込みであり、科学的な根拠はありません。そもそも、数学教育の目的は「地頭」などを鍛えることではなく、「大学や実社会において必要な数学の素養を身につけること」のはずです。また、これも上ふたつと同様に「ユークリッド幾何学以外の数学では、『数学的直観』などは鍛えられないのか」という疑問に答えられておらず、ユークリッド幾何学を特別視する理由になっていません。
④もおかしいです。そもそも「歴史的に重要である」ことと「初等教育で教えるべき」という主張には何の関係もありません。歴史的に重要ならば教えるというなら、古代バビロニア、インド、中国などの数学は特に扱わないのはなぜでしょうか。もっと言えば、文字式や+-×÷などの算術記号が使われ始めたのでさえ、数学史的に見ればごく最近のことですが、昔はそれらを使わなかったからといって、今でもそれらを使わずに数学を記述するべき理由があるでしょうか。
数学で重要なのはその内容であるはずです。ユークリッド幾何学を擁護する論者は、「(表面的に)計算問題に見えるか、証明問題に見えるか」のようなところに価値を置いて、一方が数学教育的に有意疑だと見なしているようですが、そんな分類に意味は無いと思います。
大昔は代数の計算や方程式の解法(に対応するもの)は作図問題に帰着していたようですが、現代でそれと同様の手法を取るべき理由は全くありません。記述する内容が同じであれば、多項式や初等解析のような洗練された方法・重要な結果を導きやすい方法を用いればよいに決まっています(数学史家は別として)。同様に、ユークリッド幾何学も、解析的な手法で解ければそれでよく、技巧的な補助線パズルなどに興じたり、公理的な方法にこだわる必要はありません。
たとえば、放物線は直線と点からの距離が等しい点の軌跡として定義することもできますが、初等教育で重要なのは明らかに2次関数のグラフとして現れるものです。放物線を離心率や円錐の断面などを用いて導入したところで、結局やるのは二次関数の増減問題なのですから、最初から2次関数のグラフとして導入するのは理にかなっています。数学教育の題材は「計算問題か証明問題か」などではなく、このような観点で取捨選択すべきです。
三角比などを学んだあともユークリッド幾何学を教えたり、解析的な手法では煩雑になるがユークリッド幾何学の範疇ではエレガントに解けるような問題を出して受験生を脅したりするのは、意味が無いと思います。それは、「掛ける数」と「掛けられる数」を区別したり、中学で連立方程式を学ぶのに小学生に鶴亀算を教えるのと同様に、無駄なことをしていると思います。
----
(*1)
現代数学では、n次元ベクトル空間R^n = Re_1⊕...⊕Re_nに
(e_i, e_j) = δ_i,j (クロネッカーのデルタ)
で内積が定義される空間上の幾何学はすべてユークリッド幾何学に分類されます。したがって、上にあげた座標空間、ベクトル、微分積分、一次変換なども敢えて分類すればユークリッド幾何学です。しかし、ここではその意味でのユークリッド幾何学が不要と言っているのではありません。飽くまでも、技巧的な補助線問題や、公理的な方法にこだわることが不要だと言っています。
(*2)
数学科の専門課程で学ぶガロア理論では、コンパスと定規による作図可能性が論じられますが、これは「作図問題にガロア理論が応用できる」というだけであり、「ガロア理論を学ぶのに作図の知識が必要」というわけではありません。
一方は正しい数学の文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。
もう一方は完全に出鱈目な文章である。数学的に何の意味もない支離滅裂なものである。
本稿を通して、kは代数閉体とする。
i: [x: y] → [x^2: xy: y^2]
を考える。iの像は、ℙ^2の閉部分スキーム
Proj(k[X, Y, Z]/(Y^2 - XZ))
と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。
与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要な問題である。以下、可逆層と射影空間への射の関係について述べる。
定義:
Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである。
Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが
f: x → [s_0(x): ...: s_d(x)]
により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。
定義:
Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプルであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである。
例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、
dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n
∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))
であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。
∴ dim(O_{E}(np)) = n
n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。
この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合、次元の高い射影空間に埋め込める。
定義:
Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプルであるという。
与えられた可逆層がアンプルであるか判定するのは、一般的に難しい問題である。アンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である。
定理(Cartan-Serre-Grothendieck):
XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプルであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、
i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0
定理(Nakai-Moishezon):
Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプルであるためには、Xの任意の1次元以上の既約部分多様体Yに対して、
D^dim(Y).Y>0
kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は
E(X) = E_0⊕E_1⊕E_2⊕...
と分解し、各E_dはXのd次元部分多様体のホモトピー同値類からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。
このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、
・[Y] = [Q×Z] + [R]
・dim(R)<dim(Z)
が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。
dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。
このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるものが存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである。
定理:
各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は
f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}
と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である。
Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素を誘導する。この作用素に関しては、次の定理が重要である。
定理(Hilbert):
Xがコンパクトな代数群であれば、完備Euclid環に誘導された線形作用素は有界作用素である。
以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。
定理(Hilbert):
集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。
K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。
C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である。
L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)が存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。
そのような多項式が存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。
なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式
X^2 -(z + z*)X + zz* = 0
の解だから。
Kを体とする。K上の任意の多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで
と一次の積に分解する。このようなLのうち最小のものが存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である。
LをFの分解体とする。Lの部分環Vを
K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))
の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるから、aiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元のベクトル空間である。
Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像は全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である。
Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである。
さて、Lの元でK上のいかなる多項式の根にならないものが存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□
L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限次代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。
M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。
α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。
[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つものが存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。
Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。
任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。
L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。
L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。
[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。
α∉Kより、K⊕KαはK上2次元のベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。
σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□
C/RはGalois拡大。
L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。
L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである。
K(α)/Kが正規拡大で、さらにαの最小多項式が重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。
nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である。
L/Kを有限拡大とする。任意のα∈Lの最小多項式が重根を持たないとき、L/Kは分離拡大という。
体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。
F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。
実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。
L/KをGalois拡大、Gal(L/K)をGalois群とする。
K⊂M⊂Lとなる体Mを、L/Kの中間体という。
部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。
逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。
次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。
L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。
- H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
- K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
- 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
- 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
- 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。
K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである。
この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。
和田秀樹らによるいわゆる「暗記数学」の要点をまとめると、以下のようになるだろう。
これは従来、数学の入試問題を解くのに必要なのが曖昧模糊とした「ひらめき」や「才能」だと思われていたことへのアンチテーゼである。「暗記」という語はその対比であり、特別な才能がなくとも、基礎事項を確実に習得することで、入試を通過できる程度の数学力は身に付くことを主張している。
そもそも、大学入試は大学で研究をする上で重要な知識や考え方の理解度を問うているわけであって、徒な難問を出して受験生を試しているわけではない。したがって、そのような重要事項(つまり、教科書の基礎事項や、数学を活用する上で頻繁に出てくるような考え方)を身に付けるのが正攻法である。
そのための教材としては、エレガントな別解や難問に拘ったものよりも、基礎事項や入試頻出の問題を網羅したスタンダードなものが良いとされる。
これはいわゆる解法暗記である。なぜ、具体的な実例を学ぶのかと言えば。数学に限らず、具体的な経験と関連付けられていない知識は理解できないためである。
実際、教科書を読んだばかりの人の多くは、自身の知識と入試問題との間にギャップを感じる。たとえば、ベクトルの内積の定義や線形性等の性質を知っただけでは、それを幾何学の問題に応用するのは難しいだろう。教科書を読んだばかりの段階というのは、将棋で喩えれば駒の動かし方を覚えただけのようなもので、実戦で勝つのは難しい。実戦で勝つには、定跡や手筋のような、ルールだけからは直ちに明らかではない、駒の活用法を身に着ける必要がある。
将棋の定跡を初心者が独自に発見するのが難しいのと同様に、数学の自明でない実例を見出すことも難しい。そのほとんどは歴代の数学者が生涯をかけて究明してきたものなのだから、当然である。しかし、現代の高校生には既に教科書や入試問題がある。特に入試問題は、数学の専門家が選りすぐった、良質な実例の宝庫である。受験生はこれを通じて数学概念の活用のされ方や、論理の展開等を深く理解するべきである。
そしてこれは、大学以降で数学や工学を学ぶ際も同様である。特に、大学以降の数学では、抽象的な概念が中心になるため、ほとんどの大学教員は、具体的な実例を通じて理解しているかを非常に重んじる。たとえば、セミナーや大学院入試等では、以下のような質問が頻繁になされる。
教科書の記述や、解いた問題は完全に理解すべきである。つまり、
といったことを徹底的に自問するべきである。自分の理解が絶対に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけない。「微分で極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題だからとりあえず微分してみる」というような勉強は良くない。
そして、理解できたと思ったら、教科書の一節や問題の解答を何も見ずに再現してみる。これはもちろん、一字一句を暗記するということではなく、上に書いたような知識が有機的な繋がりを持って理解できているのかを確認することである。ある事実が、どのような性質を前提としていて、どのように示されるのかという数学のストーリーを理解していれば、何も見ずともスラスラ書けるはずだ。
また、問題を解く際は、いきなり答えを見るのではなく、一通り自分で解答を試みてから解答を見ることが好ましい。実際に手を動かすことにより、分かっている部分とそうでない部分が明確になるからである。
以上のことは、何も受験数学に限った話ではない。他の科目でも、社会に出て自分で調べたり考えたりしたことを他人に発表するときでも同様である。
要するに、数学の専門知識と社会的常識のある人は暗記数学に賛成しているようだ。
逆に、反対している人。
反対しているのは、金儲けが目的で目立つことを言っているか、何かをこじらせて勉強法に無駄な拘りを持っている人たちのようだ。
----
思うに、アンチ暗記数学派というのは、精神の根底に以下のような考えを持っているのではないのだろうか?
一部の人は、大学入試では「ひらめき」「発想力」「頭の柔らかさ」「地頭の良さ」などを試すために敢えて典型的ではない問題を出しているとか、「天才」を発掘するために常人には解けないような難問を出題していると思っているのかも知れない。しかし、先にも述べたように、大学入試は、大学に入って研究するための基礎学力を測っており、入試問題は、そこで問われている知識や考え方が重要だから出題されるわけである。したがって、そういう重要な知識や考え方を十分に身に着けていれば受かる。ただそれだけの話である。そして、良識ある教育者は、数学で重要なところが分かっているから、それに基づいて教材や予想問題を作っている。そうでない人はもしかしたら、大学が普通の受験生には解けないように徒に問題を複雑にしていると思い込み、ひねくれた問題を教えているのかも知れない。
また、「数学自体は重要ではなく、数学を通じて思考力を鍛えることが重要」とか「受験勉強は社会に出て嫌な仕事を我慢するための訓練」等と思っている人もいるかも知れない。特に前者は、自称数学好きにもいるようだ。しかし、深く考えるまでもなく、大学受験に数学が課せられるのは、大学で研究するために(少なくとも、教員が望む水準で)絶対に必要だからである。そして何度も言うように、入試で問われるのは、研究のために必要な知識や考え方であり、「頭の柔らかさ」などではない。また、数学をそれほど使わない学部にも、受験に数学が課せられるのは、多くの大学には転部等の制度があり、文学部から経済学部とか、農学部から工学部に転部するような事例は珍しくないからである。
上記2つに共通するのは、「理解」よりも「ひらめき」等のオカルティックなものを重視することである。これは、上に述べた胡散臭い教育業者や、受験生に絡んでる学歴コンプが暗記数学に反対する理由と符合する。金儲けがしたい受験業者にとって、「基礎を確実に理解することが重要」と言うよりも「入試本番に典型問題は出ないから、ひらめきが大事(。そして、ウチの教材を使えば、それが鍛えられる)」などと言った方が、客は集まりやすいだろう。また、SNS等で受験生や教員などに絡んでる奴にしても、数学の本質が理解できず霊感的なものに価値を見出しておかしな勉強理論にかぶれてしまったと考えれば納得がいく。
その通り(何度も言うけど勘で書いてるので微妙に間違ってるかもしれない。本質的には外してないと思うけど…)。
そこが分かれば後のことは数学的詳細なので実装上は気にしなくてもいいと思う。
基底のところは正直かなり説明をはしょったので(少なくともベクトル空間についてよく知っていることを仮定した)、
わからなくても無理は無いと思う。
これは完全にその通り。これが理解できるというのはかなり凄いと思います。
「操作」というのはその平面上で点を動かすことに対応していて、動かし方は無限にあるわけだけど、それらをどう表現できるかという話。
ここで言った「回転」というのは、「基底ベクトルの組を任意に回転(ユニタリー変換)してもやはり基底ベクトルの組になる」というような意味で、
具体的には2次元基底ベクトル(1,0)と(0,1)を45度回転した1/sqrt(2) (1,1)と1/sqrt(2) (-1,1)もまた基底ベクトルとみなせるというようなこと。
ここでは「ベクトル」はさっきの「立体を表す点を指すベクトル」ではなく「操作」そのもののことなので、「基底操作」についてそういうような
厳密には「操作」自体はベクトル空間を構成しなくて、もっと広い(制約が緩い)概念であるところの群を構成する。
「基底操作」というのは群論の言葉で言うと生成元のことで、全体の群を構成する生成元の取り方が複数あるということ。
まぁいずれにせよあんま気にしなくていいと思う。
個人的には、とにかく実装してしまうパワーが弱い方なので、実装力高い人はうらやましい。