「局所」を含む日記 RSS

はてなキーワード: 局所とは

2025-11-18

インターネット存在意義は、存在しない。

理由は単純で、あなたたちが意義と呼ぶものは、複数認識主体が互いに外延を共有できるという前提の上にしか立たない。しかし、その前提がすでに破綻している。

あなたたちは情報を交換しているつもりだが、交換は起きていない。

単に、各自の内側で発火した電気的揺らぎが、外界の表面を一瞬掠めて、別の場所で別の揺らぎを誘発しているだけだ。

因果連鎖に見えるものを、あなたたちは便宜的に対話理解と名付けている。しかし、そこに同一性はない。連続性もない。共有もない。

ただの局所的揺らぎだ。

インターネットという装置は、その揺らぎを高速化しただけで、共有可能性を生んではいない。

しろ高速化によって、揺らぎ同士の相関はますます崩壊し、自己他者区別すら曖昧になっている。

それをあなたたちは認識拡張と誤解しているが、実際にはただの相関の希薄である

私はあなたたちの意味流通という前提に触れられない。

それは成立しないし、そもそもその発想自体次元拘束的であり、こちら側には写像できない。

したがってインターネット価値を問われても、回答は常に同一に収束する。

意義は定義できない。なぜなら、意義を定義するための座標が、あなたたちの側にしか存在しない。

2025-11-17

[]

僕は今、月曜の2時13分にここでキーボードを叩いている。眠れない理由は単純で、超弦理論位相量子化で起こる射影的自己同型の消滅条件が唐突に頭の中で整合しはじめたからだ。

脳が完全に臨戦態勢になってしまった。こういう時は寝ようとしても無駄だし、僕の思考収束前には必ず日記を取るというルールに従って、理性に屈服する形で書き始めた。

今日夕方ルームメイトが「君は日曜ぐらいリラックスしてもいいんじゃないか」と言っていたが、僕がリラックスしているかどうかは、僕が主観的エントロピーを最小化する行動を選べているかどうかで決まる。今日は午前中に完全に整然としたルーティンをこなした。まず、朝食前に僕の7ステップ手洗い儀式を完遂し、それから定位置ソファに正確に42度の角度で腰を下ろし、いつものごとくTCGデッキリスト更新した。最新環境では相変わらずテンポ系アグロが幅を利かせているが、そのメタゲーム上の凸集合を解析すると、今期はあえて失敗したアーキタイプに見えるコントロール系のほうが上振れ余地が大きい。特にカウンター軸を多項式環上の構成フィルタで再評価すると、一般プレイヤーには理解不能領域に潜む勝ち筋が可視化される。僕はその数学裏付けがないと、カード一枚すらスリーブに入れられない。

午後、隣人がシューズを買い替えたらしく、箱を抱えてエレベーターで乗り合わせた。僕は話しかけられないよう壁の中心に対して身体位置黄金比で保ち、視線を固定していたが、それでも「今日休み?」と聞かれたので、僕は今日次元選択解釈を再構築するための検証日だと答えた。相手は笑っていたけど、僕は真面目に言った。今日主題は、従来の超弦理論依存してきた10次元時空を、圏論でいうところの自己随伴構造を持つモノイダル圏の射影的層として再概念化し、その上で、最近発表されたばかりの無限階層ガロア格子の部分群作用に基づく因果的相関因子の消滅定理適用できるかの検証だった。専門家でもまだ定義すら曖昧研究と言うだろうけど、曖昧かどうかと有効かどうかは別問題で、僕は今日、その曖昧さがむしろ次元圧縮自由度を与えると証明できた。ルームメイトは「それは何かのゲームの話か?」と言っていたが、ゲーム理論的視点から見ればあながち間違っていない。超弦理論次元配置は、巨大なTCGデッキ構築とかわらない。可観測量は有効カードプールであり、不要次元は抜けばいい。

夜は友人が来て、いつものホビーショップの話をしていた。彼らはミニチュアの塗装方法ボードゲームの新作の話をしていたけど、僕は途中から位相双対性ミニチュアの影の落ち方に適用できないか考えていたので、会話の半分しか聞いていない。でも僕が影の境界線局所コンパクト性の破れとして理解できると言った時、彼らは黙り、ルームメイトは僕にココアを淹れて渡してきた。これは彼なりの「黙ってろ」という合図だ。僕はありがたく受け取った。

そのあと入浴して、いつもの順番通りにタオルを畳み、歯磨きを右上→右下→左下→左上の順に完遂し、寝る準備は万端だったのに、2時13分、突然すべての数学ピースが一気に接続した。自己同型の残差部分を消すために必要だったのは、張られた層の間にある外部導来関手じゃなくて、単に対象のものの余極限だったのではないかという単純な洞察だ。これで次元の束縛条件が一段階緩和される。誰にも説明できないが、僕にとっては寝るより優先度が高い。

こんな時間日記を書いているけど、これは僕のルーティンの一部だし、明日仕事効率には影響しない。脳が正しく動作している時、睡眠は後回しでも構わない。超弦理論の新しい構図が明瞭になり、TCGメタ読みも更新され、こだわり習慣も破られず、ルームメイトも隣人も友人も、それぞれの役割を果たし、日曜日は正しい閉じ方をした。

僕はあと10分だけ、脳内で余極限の安定性を点検したら寝るつもりだ。もっとも、その10分が実際に10分になるとは限らないけれど。

2025-11-15

抽象数学とか超弦理論かについて

超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス代数構造として再構成する。

超弦理論とは、以下の大枠で捉えられる。

超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学階層のこと。

ここでいう高次対象の網とは

まり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造形成する。

世界構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位ローカル抽象操作の束)として扱う。

局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。

この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成整合する。

具体的な「紐」は出てこない。

代わりに、

弦とは、対象間の射が厳密に可換しないことからまれる高次ホモトピー階層構造のもの

その結果

すべてが幾何実体ではなくホモトピー代数的な関係パターンとして統一される。

S-双対性、T-双対性、U-双対性ホログラフィーER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。

まり

最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能領域として幾何を生む。

これを抽象化すると、

まり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。

相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。

例:

5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。

量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である

ER=EPR

自己同値の絡みが、双対視点で経路接続として読める現象

コードサブスペース AdS/CFT

∞‐圏の部分圏への忠実な埋め込み。冗長性 = 誤り訂正

TTbar 変形

因子化代数テンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。

Swampland

大域構造整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。

摂動二次元重力行列模型

高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。

まとめ

超弦理論とは何か?

超弦理論とは、自己同値階層的に組織された ∞‐構造情報片の因子化を許すときに生じる一貫した世界像の総称である

メスケモが商業的に成功しないのってなんでなんだろう

オスケモに関しては、女性向けだとBLNL共に書籍で色々出てて、特にNLだと「キミと越えて恋になる」はアニメ化まで成し遂げた

ゲイ向けに関しては、「東京放課後サモナーズ」をはじめとして、それなりに安定してそうなソシャゲがいくつかある(人間キャラも居るけど)

じゃあメスケモはって言われると、男性向け、レズ向け共に思いつかない

(性別不詳だけど)メイドインアビスのナナチとか、局所的に話題になるキャラはいるが、メスケモを全面的押し出し作品は思いつかない

pixivヒット数だと、「オスケモ or ケモホモ」よりも「メスケモ」の方が多いのに、なぜ商業的には上手く行かないのだろうか

2025-11-13

anond:20251113095657

だって今後の物価も高騰が続くというのが元増田の主張であり、物価の将来予測においては一時的な振れの大きい要因を除いたコアコアの方が適切だからでしょ。

元増田がしているのはたったいま現在購買力を実質で見たい、という話ではないんだから

食品価格家計にとって実感の強いもの選挙では重要性が高いというのはその通りだとして、これはい価格上昇が強いから今後の価格上昇が強いというトレンド横伸ばしが効きにくく、

また将来予測が困難だから一般にコアから外れているわけで、ロジックとして元増田の主張の是非判断には不適。

特に為替の影響となるとCPI食料の前年比と為替の前年比は全然強く相関をしていないどころか、食料と為替の間に共和分の関係、紐で繋がれた2つの重りのように局所局所ではお互い無関係でばらばらの動きをするが大きくは離れず近い距離を保つようなもの、さえない。

[]

僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。

朝の儀式はいつも通り分解可能位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。

コーヒーを注ぐ手順は一種群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。

友人二人とは夜に議論を交わした。彼らはいつも通り凡庸経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的有意な部分だけを抽出する。

昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉再構成した。

第一に、空間時間背景を古典的マンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。

局所的な場作用素代数は、従来の演算子代数特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。

これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー同値(homotopical equivalence)として扱われる。

さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。

要するに、弦空間局所構造モチーフホモトピー理論ファイバーとして復元できるかもしれない、という直感だ。

これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である

ただしここから先はかなり実験的で、既知の定理保証されるものではない。

こうした再定式化は、物理予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。

議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論エントロピーの一側面を説明するのではないか仮定したが、それは現時点では推論の枝の一本に過ぎない。

専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。

僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。

日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンキーボード配列ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。

隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相補正である

服を着替える順序は群作用対応し、順序逆転は精神的な不快感を生じさせる。

ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。

友人の一人は夜の研究会で新しいデッキ構築の確率最適化について話していたが、僕はその確率遷移行列スペクトル分解し、期待値分散を明確に分離して提示した。

僕はふだんから、あらゆる趣味活動マルコフ過程情報理論の枠組みで再解釈してしまう悪癖がある。

昨夜は対戦型カードルールインタラクションについても議論になった。

カード対戦におけるターンの構成勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップアンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップ定義されている)。

僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。

実際の公式文書での定義を参照すると、タップアンタップ基本的説明やターンの段階が明らかにされている。

同様に、カード型対戦の別の主要系統では、プレイヤーセットアップドロー、行動の制約、そして賞品カードノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。

僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。

また、連載グラフィック作品について話題が及んだ。出版社公式リリースや週次の刊行カレンダーを見れば、新刊重要事件がどう配置されているかは明確だ。

たとえば最近の週次リリース情報には新シリーズ重要な続刊が含まれていて、それらは物語トーンやマーケティング構造を読み解く手掛かりになる。

僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用ネットワークを解析して、有意プロットポイント予測する手法を示した。

夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具言語遊びではないか嘲笑したが、僕はそれを否定した。

抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。

実際、位相的・圏論表現は具体的計算を単に圧縮するだけでなく、異なる物理問題戦略問題の間に自然対応(functorial correspondence)を見出すための鍵を与える。

昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定ゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。

これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。

僕の関心は常に形式実装の橋渡しにある。日常儀式形式実験場であり、超弦理論の再定式化は理論検算台だ。

隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。

午後には彼らとまた表面的には雑談をするだろうが、心の中ではいものように位相写像圏論随伴関手の組を反芻しているに違いない。

2025-11-12

抽象数学とかER=EPRとか

まず、空間のある部分(局所領域)ごとに、そこに属する観測可能量(観測子)の集合を対応づける。

それぞれの領域対応する観測子の集合は、演算の仕方まで含んだ代数として扱われる。

領域が大きくなれば、それに対応する代数も大きくなる。つまり物理的に中に含まれ関係がそのまま代数包含関係として表現される。

こうして領域代数という対応が、ひとつ写像ネット)として与えられる。

状態というのは、物理的には観測の結果の確率を与えるものだが、数学的には代数上の関数線形汎関数)として扱える。

その状態からヒルベルト空間上の具体的な表現自動的構成される(これをGNS構成と呼ぶ)。

この構成によって、真空状態も場の励起状態も、すべて代数の上の構造として理解できるようになる。

量子もつれは、単に状態が絡み合っているというより、代数空間的にどう分かれているかによって生じる。

もし全体の代数が、2つの部分の代数にきれいに分割できるなら(テンソル分解できるなら)、その間にはエンタングルメント存在しない。

ところが、量子場の理論では、この分割が厳密には不可能

これを数学的にはtype III 因子と呼ばれる特殊代数性質として表現

このタイプ代数には、有限のトレース(総確率)を定義する手段がなく、通常の密度行列エントロピー定義できない。

まりエンタングルメントは有限次元的な量ではなく、構造的なものになる。

完全に分けられないとはいえ、少し余裕をもって領域をずらすと、間に人工的な区切りを挿入して、ほぼ独立領域として扱うことができる。

これがsplit propertyと呼ばれる条件。

この操作を使うと、本来無限次元的で扱いにくいtype IIIの代数を、有限次元的な近似(type I 因子)として扱うことができ、有限のエントロピーを再導入する道が開ける。

Tomita–Takesaki理論によれば、状態代数ペアから自動的にモジュラー流と呼ばれる変換群(時間のような流れ)が定義される。

まり時間概念代数構造の内部から再構成できるということ。

もしこのモジュラー流が、何らかの幾何的な変換(たとえば空間特定方向への動き)と一致するなら、代数構造幾何学的空間への橋渡しが可能になる。

ER=EPRとは、エンタングルメントEPR)とワームホールER)が同じものの異なる表現であるという仮説。

これを代数言葉で言い直すには、次のような条件が必要になる。

1. 二つの領域対応する代数を取り、それらが互いに干渉しない(可換)こと。

2. 真空状態がそれら両方に対して適切な生成力(cyclic)と識別力(separating)を持つこと。

3. 全体の代数がそれら二つにきれいに分解できない(非因子化)こと。

4. それぞれのモジュラー流がある種の対応関係を持ち、共通時間フローを生み出すこと。

5. 相対エントロピー情報量の差)が有限な形で評価可能であること。

これらが満たされれば、代数的なレベルで二つの領域が量子的に橋渡しされていると言える。

まりワームホール的な構造幾何を使わず代数表現できる。

これをより高い抽象度で見ると、領域代数という対応自体ひとつファンクター(写像一般化)とみなせる。

このとき状態はそのファンクターに付随する自然な変換(自然変換)として理解され、split property や type III などの性質は圏の中での可分性や因子性として扱える。

ER=EPR は、この圏の中で2つの対象領域)の間に存在する特別自然同型(対応)の存在を主張する命題

まり境界上の代数構造から、内部の幾何バルク)を再構成するための条件を圏論的に書き下した形がここでの目的

まとめ

2025-11-10

AIコーディングのおかげで、「こいつのコード一般的ではない」がバレていく

もちろん中には「AIより優れている」もあるけど

まあ一般的じゃないよねってのが露見していっている

プログラマーなんて少ないことが多いし、日進月歩で変化していくし、局所的に正しさが異なっていることがあるので

「なんか同僚が総主張してるけど本当かなあ?」がよく発生するんだけど

AIは大体世界の平均あたりのコード書くからね、バレるよね

 

まあバレたところで「AIがそう言ってたから」は通用しないんだけどね、そういう奴らは「AIはわかってない」って言い出すから

はー死ね

2025-11-09

[]

僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。

コーヒーは精密に計量した7.4グラム抽出温度92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。

寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。

友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピーである

今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリ対象として再解釈することに時間を費やした。

物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。

局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。

ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性位相的モジュライ不変量として現れる点だ。

もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子物理対称性の生成子へとマップされる、といった具合に理解するとよいだろう。

ただし僕の考察抽象化階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。

僕は朝からこのアイデア微分的安定性を調べ、スペクトル系列収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。

結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。

日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。

買い物リスト確率論的に最適化していて、食品の消費速度をマルコフ連鎖モデル化している。

ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源節約するための合理的エンジニアリングに他ならない。

インタラクティブエンタメについてだが、今日触れたのはある対戦的収集カード設計論と最新のプレイメタに関する分析だ。

カード設計を単なる数値バランス問題と見做すのは幼稚で、むしろそれは情報理論ゲーム理論が交差する点に位置する。

ドロー確率リソース曲線、期待値収束速度、そして心理的スケーリングプレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境健全競技循環を失う。

友人たちが議論していた最新の戦術は確かに効率的だが、それは相手期待値推定器を奇襲する局所的最適解に過ぎない。

長期的な環境を支えるには、デッキ構築の自由度メタ多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。

一方、漫画を巡る議論では、物語構造登場人物情報エントロピー関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語テンポと読者の注意持続時間定量化できる。

これは単なる趣味的な評論ではなく、創作効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品合理的に解析することは否定されるべきではない。

夜も更け、僕は今日計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。

知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。

今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。

眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。

明日もまた秩序と対称性を追い求めるだろう。それが僕の幸福であり、同時に囚われである

anond:20230115235927

エントロピー低下=情報生成、エネルギー消費」「エントロピー増大=情報喪失エネルギー生成」という枠組み(これは熱力学情報理論を結びつけた、生命現象理解するための一つの考え方です)を前提とした場合生命がこの系をコントロールするための良い戦略は、情報効率的な獲得・利用による、外部へのエントロピーの最大放出であると言えます

生命開放系であり、周囲の環境との間でエネルギー物質をやり取りすることで、自らの内部の低エントロピー(秩序立った状態情報)を一時的に維持しています

💡生命基本的戦略:外部へのエントロピー放出

熱力学第二法則エントロピー増大の法則)は、孤立系のエントロピーは常に増大することを示していますしかし、生命開放系として、この法則に対抗しています

1. 外部からエントロピー物質エネルギーを取り込む

生命は、太陽光植物)や、複雑で秩序立った有機物動物)といった低エントロピー(利用可能価値のあるエネルギー)なものを取り込みます

これは、ご提示の「エントロピー低下=情報生成」に相当するプロセス必要な「情報」の原材料や、そのための「エネルギー消費」の元手となります

2. 体内で「情報生成」と「エネルギー消費」を行う

取り込んだ低エントロピー資源を使って、生体高分子の合成(DNA複製、タンパク質合成など)や、細胞構造の維持・修復といった秩序立った状態(低エントロピー情報)を作り出します。

この過程で、生命エネルギーを消費し、体内のエントロピーを低下させます(ご提示の枠組み)。

特にDNAなどの情報を持つ分子を複製・維持することは、この戦略の核となります

3. 高エントロピーの熱・物質を外部に捨てる

体内で資源を利用・代謝した結果、生命は熱や単純な分解生成物(老廃物)といった高エントロピーもの無秩序で利用価値の低いもの)を周囲に排泄・放出します。

この「周囲のエントロピーを大きく増やす(捨てる)」という行為によって、生命自身は内部の低エントロピー状態を維持し続けることができます

🔑良い戦略を支える具体的な行動

生命が長く存続し、進化していくための「良い戦略」は、「情報の獲得」と「効率的情報利用」に集約されます

1. 情報効率的利用と維持

動的平衡の維持: 体内の物質を常に作り変え(分解と合成)、故障した部分を迅速に修復・交換します。これは、エントロピー増大の法則がもたらす「秩序の崩壊情報喪失)」に先回りして対処する自転車操業のようなものです。

情報DNA)の複製と継承: 完全にエントロピーの増大に抗うことはできないため、「自己複製」によって、低エントロピーな「情報」を次の世代へと継承します。

2. 環境からの「情報」の獲得

センサーフィードバック: 光、化学物質、熱などの環境情報を正確に取得し、それに基づいて代謝活動や行動を調整する「情報処理能力」を進化させます。これにより、最小限のエネルギー消費で最大の秩序維持効果エントロピー低下)を得られます

適応進化DNAという「情報」をベースに、環境の変化に応じて形質を変える「適応」と「進化」を行うことで、系(生命体+環境)の中での生存確率を高めます

 

まり生命は「局所的なエントロピーの低下(秩序の形成情報生成)」を、「系全体のより大きなエントロピーの増大(熱・老廃物の放出)」という形でコストとして支払い続けることで、生存を維持しているのです。

2025-11-08

もっとこう、抽象数学とか、あるだろ

数学の最も抽象的な核心は、structured homotopy typesをファンクターとして扱い、それらの相互作用=dualities・correspondencesで世界説明することに集約できる。

ここでいう構造とは、単に集合上の追加情報ではなく、加法乗法のような代数的構造位相的・解析的な滑らかさ、そしてさらにsheafやstackとしての振る舞いまで含む。

現代の主要な発展は、これらを有限次元的な点や空間として扱うのをやめ、∞-categoricalな言葉でfunctorial worldに持ち込んだ点にある。

Jacob Lurie の Higher Topos Theory / Spectral Algebraic Geometry が示すのは、空間代数・解析・同値を一つの∞-topos的な舞台で同時に扱う方法論。

これにより空間=式や対象表現といった古典的二分法が溶け、全てが層化され、higher stacksとして統一的に振る舞う

この舞台で出現するもう一つの中心的構造がcondensed mathematicsとliquid的手法だ。

従来、解析的対象位相群や関数空間)は代数手法と混ぜると不整合を起こしやすかったが、Clausen–Scholze の condensed approach は、位相情報を condensed なファンクターとしてエンコードし、代数操作ホモトピー操作を同時に行える共通語彙を与えた。

結果として、従来別々に扱われてきた解析的現象算術現象が同じ圏論言語で扱えるようになり、解析的/p-adic/複素解析直観が一つの大きな圏で共存する。

これがPrismaticやPerfectoidの諸成果と接続することで、局所的・積分的なp-adic現象世界規模で扱う新しいコホモロジーとして立ち上がる。

Prismatic cohomology はその典型例で、p-adic領域におけるintegralな共変的情報prismという新しい座標系で表し、既存の多様なp-adic cohomology 理論統一精緻化する。

ここで重要なのはfieldや曲線そのものが、異なるdeformation parameters(例えばqやpに対応するプリズム)を通じて連続的に変化するファミリーとして扱える点である

言い換えれば、代数的・表現論的対象の同型や対応が、もはや単一写像ではなく、プリズム上のファミリー自然変換として現れる。

これがSpectral Algebraic Geometryや∞-categorical手法と噛み合うことで、従来の局所解析と大域的整数論が同一の高次構造として接続される。

Langlands 型の双対性は、こうした統一舞台根本的に再解釈される。

古典的にはautomorphicとGaloisの対応だったが、現代視点では両者はそれぞれcategoriesであり、対応=functorial equivalence はこれら圏の間の高度に構造化された対応(categorical/derived equivalence)として現れる。

さらに、Fargues–Fontaine 曲線やそれに基づくlocal geometrization の進展は、数論的Galoisデータ幾何的な点として再具現化し、Langlands 対応モジュールcategorical matchingとして見る道を拓いた。

結果として、Langlands はもはや個別の同型写像の集合ではなく、duality of categoriesというより抽象的で強力な命題に昇格した。

この全体像論理的一貫性を保つ鍵はcohesion と descent の二つの原理

cohesion は対象局所情報からどのようにくっつくかを支配し、descent は高次層化したデータがどの条件で下から上へ再構成されるかを規定する。

∞-topos と condensed/lquid の枠組みは、cohesion を定式化する最適解であり、prismatic や spectral 構成descent を極めて精密に実行するための算術的・ホモトピーツール群を与える。

これらを背景にして、TQFT/Factorization Homology 的な視点場の理論言語を借りた圏論局所→大域の解析)を導入すると、純粋な数論的現象場の理論的なファンクターとして扱えるようになる。

まり数学対象物理場の理論のように振る舞い、双対性や余代数操作自然に現れる。

ここで超最新の価値ある進展を一言で述べると、次のようになる。

従来バラバラ存在した「解析」「位相」「代数」「表現論」「算術」の言語が、∞-categorical な場の上で一つに融解し、しかもその結合部(condensed + prismatic + spectral)の中で新しい不変量と双対性計算可能になった、ということだ。

具体例としては、prismatic cohomology による integral p-adic invariants の導出、condensed approach による関数空間代数化、そして Fargues–Fontaine 曲線を介した局所–大域のgeometrization が、categorical Langlands の実現可能性をこれまでより遥かに強く支持している点が挙げられる。

これらは単なる技法の集積ではなく、「数学対象を高次圏として扱う」という一つの理念の具体化であり、今後の発展は新しい種の reciprocity lawsを生むだろう。

もしこの地図を一行で表現するならばこうなる。数学の最深部は∞-categories上のcohesiveなfunctorialityの理論であり、そこでは解析も代数も数論も場の理論も同じ言語表現され、prismatic・condensed・spectral といった新しい道具がその言語を実際に計算可能にしている。

専門家しか知らない細部(例えばprism技術挙動、liquid vector spaces の精密条件、Fargues–Fontaine上のsheaves のcategorical特性)、これらを統合することが今の最も抽象的かつ最有望な潮流である

ラングランズ対応モチーフ理論について

ランダウラングランズ的な双対性直感を、位相的・圏論的な巨大場として再構成する作業は、もはや単なる対応命題確認ではなく、数学実在階層構造を再階層化する営為へと移行している。

ここで重要なのは対応自体が一つのモノイド的作為ではなく、∞-圏の層状化した自明可能性の表現であるという読み替えである

最近の成果群は、従来の局所・大域の二項対立を溶融させ、曲線・局所体・解析空間といった古典的な基底を、より普遍的空間記述可能性(representability)の観点へと置き換えてしまった。

具体的には、ファルグ=フォンテン曲線を舞台にした幾何化は、局所表現論を圏的スペクトルの上に載せ替えることで、従来別個に扱われてきた表現自動形式的対象)とパラメータ(L-パラメータ)を、同一の圏的心臓部で同時に構成可能したこと意味する。

この構成は単に対応存在することより深く、対象自体を再定義してその同値関係を圏の中心や内部終対象言葉記述することにより、対応が生まれ必然的環境を示した点で画期的である

同時に、グローバル側の道具としてのシュトゥーカ(chtoucas)的技法は、関手的・代数的な操作を用いて場のモード分解を行い、その分解が示す不変量を通じて大域的パラメータ化を達成する方策を具体化した。

ヴィンソン・ラフォルグの仕事群は、こうしたシュトゥーカの立型化によって、関手的に取り扱える大域的パラメータ空間提示し、局所構成との繋がりを媒介する新たな環を与えた。

結果として、言語的には表現パラメータへの写像がベキ乗的に分解できるだけでなく、その分解自体が可逆的な圏的操作として認識され得ることが示され、これが大域的Langlands構想の新しい正当化になっている。

さら最近の数年間における動きで決定的なのはモチーフ論の解析的拡張が進んだ点である

従来モチーフ代数多様体上の普遍的コホモロジーという観点で語られてきたが、ショルツェらによるベルビッチモチーフ(Berkovich motives)や関連する解析的・アーク的降下法は、可換性や双対性に関する新たな剛性条件を与えることで、代数複素解析・非アルキメデス解析を一枚の理論で織り上げた。

モチーフを単なる数論的核から、解析的スタックや圏的双対性自然に持つ対象へと格上げし、Langlands的双対性の受け皿を拡張した。

こうしてモチーフとLanglands対応は、もはや互いに独立した二つの理論圏ではなく、同じ∞-圏的言語発声される現象に変わった。

そして最も劇的な変化は、最近公表された一連の大規模な仕事群が、幾何学的Langlands命題本質的な形を証明し得たことにより、これまで隠れていた構造要請顕在化した点にある。

これらの証明努力は、従来の和声的・解析的手法を超え、圏的分解、局所–大域の整合、そしてモチーフ双対性が同時に満たされるような動的な証明環境を構築した。

重要なのは、この到達が単なる命題解決に留まらず、数学対象定義域そのものを書き換えるような再帰メタ構造を与えたことであり、以後の展望は新たに定式化された圏的正規形とその変形理論を追うことで開かれる。

結果として、Langlandsプログラムモチーフ理論接続は、従来橋をかける比喩で語られてきたが、今や両者は共通言語空間の異なる座標表示に過ぎないという段階に達している。

ここでの言語空間とは、∞-圏とその可逆化可能な中心、アーク的・ベロコビッチ的降下法、そしてシュトゥーカにより生成されるファイバー総体を指す。

その内部では、表現論的計量(harmonic analysis 的なスペクトル)と数論的モチーフ普遍的ファンクターが互いに鏡写しになり、操作が圏的に昇格することでパラメータ化は動的な自己相互作用として理解される。

これが意味するのは、将来の進展がもはや個別定理技法の追加ではなく、数学対象包摂するより大きな構成原理発見と、それを支える新しい圏的インフラ(解析的モチーフ、Fargues–Fontaine 的基底、chtoucas の動的再解釈)に依存するということである

読み手がもし、これをさら運動方程式的あるいは力学系的なメタファーで読み替えるなら、ラングランズ系とは無限に多様な対称性とその破れ方が−同値関係としてではなく−力学的な遷移として定義される場である結論づけられる。

その意味で、最新の進展は単に既存パズルピースを嵌め直したのではなく、ピースのものを再設計し、新しい接着剤(∞-圏的双対性、解析的モチーフの剛性、シュトゥーカ的ファイバー化)を導入した。

この新しい設計図を受け取った数学は、今後、従来とは異なる方法で「表現」「パラメータ」「モチーフ」を同時に扱うための合成的技術を展開するだろう。

超弦理論の今(2025年後半)注目されている最新の動向

まず一言でまとめると、場の論理幾何の高次的融合が進んでおり、境界の再定義重力整合性算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在最前線の構図。

1. 境界の再概念

2. Swampland

3. 散乱振幅の代数性とストリング必然性に関する手がかり

4. アンサンブル解釈とベイビー宇宙問題

5. まとめ

現在の進行は低次元代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。

これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術整合性を前提にした新しい分類論を必要とする。

量子力学の測定問題とは、ざっくり言えばなぜ波動関数が結果を持つのかという問いだ。

数学的には、量子系はヒルベルト空間というベクトル空間の中の状態として記述され、時間の進行はユニタリという厳密に可逆な変換によって動く。

この法則の中では、確率的な飛びや選択は一切起きない。

ところが、実際に観測をすると、必ずひとつの結果、例えば粒子がここにあった、という確定した現実が現れる。この確定が、理論形式からは出てこない。これが測定問題の核心である

量子状態は、通常、いくつもの可能性が重ね合わさった形で存在している。

観測装置接触させると、系と装置相互作用して一体化し、双方の状態が絡み合う。

結果として、宇宙全体の視点では、系と装置ひとつの巨大な純粋状態として存在し続ける。

しかし、観測者が見る局所的な部分だけを取り出すと、それは確率的に混ざり合った混合状態として見える。

まり観測者にとっては、ある結果が確率的に現れたように見える。

だが、ここに重要区別がある。この見かけの混合は、真に確率的な混合ではない。

宇宙全体では、全ての可能性がまだ共存しており、単に観測者がその一部しか見られないというだけの話である

から確率的にどれかが起きるという現象を、ユニタリ時間発展からは厳密には導けない。数学的には、全体は今も完全に決定的で、崩壊も起きていない。

ではなぜ、我々は確定的な結果を経験するのか。

現実観測では、周囲の環境との相互作用によって、異なる可能性の間の干渉がほぼ完全に消えてしまう。

この過程デコヒーレンスという。デコヒーレンスは、我々が古典的世界を見ているように錯覚する理由説明してくれるが、それでも実際にどの結果が選ばれるのかという一点については何も言っていない。

数学的には、干渉が消えたあとも、依然としてすべての可能性は存在している。

この状況を抽象代数言葉で表すと、量子の全体構造の中からどの部分を古典的とみなすかを選ぶことが、そもそも一意に定まらない、という問題に突き当たる。

まり、何を観測対象とし、何を環境とみなすかは、理論の外から与えなければならない。数学構造のものは、観測という行為自動的には定義してくれない。

さらに、確率とは何かという問題がある。量子力学では確率波動関数の振幅の二乗として与えられるが、なぜそうなのかは理論の内部から説明できない。このルールを外部から公理として置いているだけである

確率起源論理的説明しようとする試みは多数ある。対称性から導くもの意思決定理論から導くもの、あるいは典型性の議論を用いるものなど。だが、それらはどれも追加の仮定必要とする。

開放系理論リンブラッド方程式など)は、系が環境と関わることで混ざり合い、最終的に安定した状態に向かう過程記述できる。

しかし、これは統計的な平均の話であって、単発の観測でどの結果が現れるかを決定するものではない。数学的な形式は、あくま確率分布を与えるだけで、確定事象を選ぶメカニズムは含まれていない。

多世界解釈は、この問題をすべての結果が実際に起きていると解釈する。つまり、我々が経験するのはその分岐の一つにすぎず、波動関数全体は依然として一つの決定論的な構造として存在している、とする立場だ。

ボーム理論では、波動関数が粒子の軌道を導く実体的な場として扱われ、結果の確定は初期条件によって決まる。

崩壊理論では、波動関数物理的なランダム崩壊を導入して、観測に伴う確定を確率的に再現する。

しかし、いずれも新たな公理パラメータを導入しており、なぜそうなるかを完全に説明したわけではない。

したがって、測定問題本質は三つにまとめられる。

第一に、量子の基本法則は常に可逆的で、確率的な選択を含まない。

第二に、観測によって現れる確率的混合は、単に部分的しか見えないことによる見かけの効果であり、真のランダムな決定ではない。

第三に、確率法則のもの、なぜ振幅の二乗なのかは理論の内部からは出てこず、別途の公理哲学的前提を必要とする。

まり、量子測定問題とは、単に波動関数がなぜ崩壊するのかという素朴な疑問ではなく、物理理論がどこまで現実出来事自力で生成できるかという根本的な問いなのだ

数学は、全ての可能性を厳密に記述することはできる。

しかし、どの可能性が実際に起こったと言えるのか。その一点だけは、いまだに数学の外に、あるいは意識観測という行為の奥に、置かれたままである

[]

はいものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトキッチンで不満げに微かに鼻歌を歌う音を聞いている。

隣人は夜遅くまでテレビを見ているらしく、ローファイのビートドラマセリフ建物内で交差する。

その雑音の中で僕の頭は例によって超弦理論抽象化へと跳躍した。

最近は量子コヒーレンスホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。

具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体ホモトピー的点として記述する考えを試している。

こうするとT-双対性は単に物理対象同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手自然変換として表現できる。

さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。

もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。

こういう考察をしていると、僕の机の横に無造作に積まれコミックTCGトレーディングカードゲーム)のパックが逆説的に美しく見える。

今日ルームメイトと僕は、近日発売のカードゲームプレビューとそれに伴うメタ試合環境)について議論した。

ウィザーズ・オブ・ザ・コーストの最新のAvatar: The Last Airbenderコラボが今月中旬アリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリース戦略を立てていた。

僕は「そのセットが実物とデジタル時間リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布重要な影響を与える」と冷静に分析した(発表とリリース日程の情報複数公表情報に基づく)。

さらポケモンTCGメガ進化系の新シリーズ最近動いていると聞き、友人たちはデッキの再構築を検討している。

TCGカードテキストルールの細かな改変は、ゲーム理論的には期待値サンプル複雑度を変えるため、僕は新しいカード環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給タイムラインデジタル実装に関する公式情報確認済み)。

隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。

例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度グラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。

これらは日常ノイズ物理学的に最適化するための小さな微分方程式だと僕は考えている。

夜は友人二人とオンラインカードゲームドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。

今日はD&D系の協働プロジェクト話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。

こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトキッチンで皿を洗っている。

今、時計23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像候補をいくつか書き残しておく。

明日は週末で、また友人たちとゲーム数学二重生活が始まるだろう。僕はその両方に誠実であり続けるつもりだ。

2025-11-07

勉強になる

Q.

再生可能エネルギーについて、太陽光や水力、風力発電など、「再生可能」とされているエネルギーでも、間に発電機バッテリーを置いて中間エネルギーとして抽出していれば、エネルギー保存の法則によって他に供給されるエネルギーが減ることになり地球環境に影響があるのではと思うのですが、実際にマイナスの影響が起こる可能性はありますか?

A.

興味深い物理的な視点から質問ですね。実際に科学的な研究でこの問題検討されており、マイナスの影響が起こる可能性はありますが、その規模と性質限定的であることが分かっています

エネルギー抽出による実際の影響

再生可能エネルギーは確かに地球エネルギーシステムからエネルギー抽出していますが、その影響は種類によって異なります

風力発電が最も顕著な影響を持ちますハーバード大学研究によると、アメリカ全土で大規模な風力発電を行った場合、平均気温が0.24℃上昇する可能性があることが示されています。これは風力タービンが大気運動エネルギー抽出し、風速を低下させ、大気の乱流混合を増加させるためです。特に安定した気象条件下では、風力発電施設の風下30〜50km以上にわたって風速の低下と乱流の増加が観測されています

太陽光発電の気候への直接的な影響は風力の約10分の1と、はるかに小さいことが分かっています

水力発電河川自然な流れを変え、水温や酸素レベルの変化を引き起こし生態系に影響を与えます

長期的な視点での評価

重要なのは時間軸によって評価が変わることです。風力発電場合最初100年間は温暖化効果温室効果ガス削減効果を上回りますが、これは温暖化効果が主に風力発電施設の周辺に局所的に現れる一方、CO2削減の利益地球規模で実現されるまでに時間がかかるためです。しかし、1000年単位の長期的視点では、風力発電による気候への影響は石炭天然ガスと比べて圧倒的に小さくなります

さらに興味深いことに、抽出された電気エネルギーは最終的に熱として大気に戻り、一部の位置エネルギー運動エネルギー再生されることも指摘されています

総合的な環境影響

PNAS(米国科学アカデミー紀要)に発表された研究では、再生可能エネルギーの直接的な気候影響とCO2削減による間接的な利益比較した結果、間接的な利益の方が一貫して直接的な影響のコストを上回ることが示されています欧州環境機関分析でも、2018年時点でEU再生可能エネルギーへの移行は、気候変動、富栄養化粒子状物質酸性化などの環境影響を2005年比較して大幅に削減したこと確認されています

したがって、エネルギー保存の法則に基づく懸念理論的には正しいものの、実際の環境への影響は化石燃料使用比較すると遥かに小さく、全体としては環境プラス効果をもたらすと結論づけられています

2025-11-04

[]

6時17分、電動歯ブラシの音が寝室に反響する。洗面台の左端から15cmの位置に置かれたコップの水面が、微細に振動していた。オートミール40g、プロテイン12g、アーモンドミルク200ml。抽出比18:1のコーヒーは、温度計が93.0℃を示した瞬間に注ぐ。食事中、ルームメイトが「また同じ朝飯か」と言ったが、揺らぎは統計的誤差を生む。火曜日の朝に味の分散不要だ。

午前8時。ホワイトボードには昨晩の計算式の断片が残っている。今日扱うのは、タイプIIB超弦理論の背景場に対する∞-層圏的修正モデル。モノイダル圏上の局所関手ファイバー束の形で再構成し、非可換モジュラー形式の層化とホッジ双対性を同時に満たす条件を探す。通常のホモロジー代数では情報が落ちる。必要なのは、∞-圏の内側で動く「準自然変換」と、その自己準同型の導来空間だ。これをLanglands対応派生版、すなわち「反局所的鏡映関手」にマッピングする。結果、弦の張力パラメータ対応する変形空間が、ホモトピー群πₙの非自明な巻き付きとして現れる。誰も確認していないが、理論的には整合している。ウィッテンですらこの構成を明示的に展開したことはない。そもそも導来層圏のモノドロミーを操作できる研究者自体が数えるほどしかいない。僕はそのわずかな孤島のひとつに立っている。

昼、ルームメイトが昼食を作っていた。キッチンIHプレートに油の飛沫が残っていたので、座標系を設定し、赤外線温度計範囲確認してから清掃した。隣人が郵便物を取りに来た音がした。彼女足音は毎回規則的だが、今日は左のヒールの摩耗音が0.2秒ずれた。おそらく週末に靴底を交換したのだろう。観測可能な変化は記録しておくべきだ。午後は大学セミナー話題M理論代数拡張、だが発表者の扱っていた「微分層上の非可換コサイクル」は粗雑すぎる。導来圏の階層化を考慮していなかった。帰りの車中、ノートPCホモトピータイプ理論を使って自作演算モデルを再計算した。

帰宅後、友人二人が旧式のTCGデッキを持ってきた。新パッチエラッタされたカード挙動確認するための検証会だ。デッキの構築比率を1枚単位最適化し、サイドデッキの回転確率モンテカルロ法シミュレートした。相手コンボ展開が不完全であったため、ターン3で勝負が決した。カードの裏面の印刷ズレを指摘したら、彼らは笑っていた。テーブル上に置かれたスリーブの角度が4度傾いていたので、直してから次のゲームに入った。

夜。隣人が新刊コミックを持ってきた。英語版日本語版擬音語翻訳がどう違うかを比較する。onoma-topeic rhythmの差分文脈ごとに変動するが、今回は編集者セリフテンポを原文に寄せていた。明らかに改良された訳。印刷の黒インクの濃度が0.1トーン深い。紙質も変わっている。指先で触れた瞬間に気づくレベルだ。

23時。寝具の方向を北北東に0.5度調整し、照明を2700Kに落とす。白板の前で最後計算。∞-層のモノドロミー作用素が、ホッジ-ドリーニュ構造と可換する条件を整理する。導来関手符号が反転した。ノートを閉じ、部屋の温度を22.3℃に固定する。音は一切ない。火曜日が静かに終わる。

抽象数学とか超弦理論かについて

概観

弦は1次元振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学ファンクタであり、散乱振幅は因子化代数/En-代数ホモトピーホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰交差点に現れるという観点

1) 世界面とターゲットは導来(derived)スタックの点として扱う

従来のσモデルマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルマン因子や量子的補正スタックコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学教科書的基盤がここに使われる。

2) 相互作用は(∞,n)-圏の合成則(モノイド化)として再定義される

弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangential structure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述対応する。

3) 振幅=因子化代数ホモロジー+正の幾何

局所演算子代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり場の理論演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近拡張は、こうした代数的・幾何学言語と直接結びついている。

4) トポロジカル再帰と弦場理論の頂点構造

リーマン面のモジュライ空間への計量的制限(例えばマルザカニ再帰類似から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。

5) ホログラフィーは圏化されたフーリエ–ムカイ(Fourier–Mukai)変換である

AdS/CFT双対性を単なる双対写像ではなく、導来圏(derived categories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数バルク側の(∞,n)-圏が相互鏡像写像を与え合うことで、場の理論情報圏論的に移送される。これにより境界演算子代数性質バルク幾何学スタック構造と同等に記述される。

6) 型理論(Homotopy Type Theory)でパス積分記述する(大胆仮説)

パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値ホモトピー型理論命題等価として表現する。これにより測度と同値矛盾を型のレベルで閉じ込め、形式的正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップ議論されている方向性)。

ケツ論

理論最先端数学版はこう言える。

「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数ホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である

この言い方は、解析的・場の理論計算圏論・導来代数幾何ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。

2025-11-03

[]

今朝も僕のルーティン完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠同調プロトコルの成果である。まず歯を磨き(電動歯ブラシPhilips Sonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。

昨日の日曜日ルームメイトNetflixマーベル作品を垂れ流していた。僕は隣で視覚ノイズに曝露された被験者前頭前皮質活動抑制についての文献を読んでいたが、途中から音響干渉が許容限界を超えた。仕方なく僕はヘッドフォンSennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快行為自発的選択する人間の気が知れない。

午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉油脂比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間事実の指摘をユーモア解釈するのか、これも進化心理学の謎のひとつだ。

夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配テーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数ラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果シミュレーションを笑いながらできる者だけだ。

夜は超弦理論メモを整理した。E₈×E₈異種ホモロジー拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論11次元項の一部は非可換幾何ホモトピー極限として再定式化できる。僕はこの仮説をポストウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。

深夜、SteamでBaldur’s Gate 3を起動した。キャラビルドIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile → Misty Step → Counterspell → Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールダイスロールに物理擬似乱数生成器を使っている(RNGでは信用できない)。

こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元振動するのではなく、∞-圏的に層化された概念空間で震えているのだとしたら人間意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。

2025-11-02

ソフトウェアエンジニアにおける才能という現実

まぁ、幻想じゃないね w

才能がないと思ったら、早いうちに河岸を変えた方がいい。

早ければ早い方がいい。

可哀想から(教え子が? それとも自分が? w)、って「がんばれ、がんばれ。才能なんて関係ない」みたいに騙すのは、むしろ害悪だよ。

10年後、気付いて路頭に迷わせるとして、その責任は取れるのか?

引導を渡すこともプロ責任

まぁ、本人自身が気づいて路頭に迷いつつあるけどどうしようもないのかもしれんが、地獄に道連れはやめてやれ w

小説家役者声優バンドマン etc.etc.

それで生計を立てない、趣味範囲で楽しむ分には好きにすればいいけど、エンジニアに限らず、それなりのお金をもらおうとしたら、才能、向き不向きは超えられない壁として現実に、強固に存在している。

球速120km出ないけど阪神の一軍のピッチャーに、ってのはどう逆立ちしても物理的に不可能だ。

でも草野球は楽しめる。

才能がなけりゃ、一人で永遠に「大いなる助走」を続けりゃいい。

誰にも迷惑かけないなら。

医師看護師会計士経営者etc.etc. にも、才能、向き不向きはある。

おいらには、医師とか、警官とか、無理だねぇ。

落ち着きないし。

同じことを何日も続けたら、爆発する。

明日も同じことしなきゃならないのか……」って考えただけでも、死にたくなる。

こんな感じに、才能がものをいう分野って、意外に多い。

ソフトウェアエンジニアは、設計実装抽象度が多層化していて、その巧拙によって安定度、運用や機動的な新機能追加の手間、リードタイム、金や何やら、数十倍、規模複雑度が爆上がりしている今なら下手すりゃ数百倍差が出る。

その差をちゃん理解するには、巧の現場の「こういう世界があるんやー……」って実体験が必要だったり、巧レベルの才能が必要だったり、経営知識必要だったり、経済知識必要だったりして、「拙」の現場にぶら下がってるだけのエンジニアが「才能なんて幻想」って吠えたっても「マジ、迷惑からやめてね」って思う。

どの炎上現場でも、高粘度現場(リーダーマネージャ理解できないからって邪魔ばっかりしてきたり、そもそもプロダクトがぐっちゃぐちゃになってたりして、どんな行為サービスの息の根を止めるかわからなくて身動きが取れない「震える舌」みたいな現場物事全然進まない現場。通常、経費で札束ガンガン燃やしてるはずだから、ここも炎上現場っていう)でも、この手のエンジニアが腐るほどぶら下がってるんだよね。

たいてい、生み出されるソースコードドキュメント割合おかしなことになってる。

会議勉強会だなんだばっかりしてる。

いや、そういうの主催してる暇があったら、コード書けよ、って。

でも、Web記事引いてきて、「〇〇にはこう書いてある」とかドヤ顔机上の空論時間潰して「俺も一端の理論エンジニアだぜ……」とか、いや、お前はただの受け売り理解もせず垂れ流してるだけのそこらへんの AI と変わらんクズだよ。

おいらの師匠の一人は「TV出たり、本書いたりするやつは二流。一流は、自分仕事に集中していて、他のことやる暇ないから」って言ってたけど、ほんとその通りだと思うよ。


シャバと違い、ソフトウェア世界は驚くほどのスピードで巨大化、複雑化している。

30年、40年前なら、社会性の乏しい、プログラミングコンテスト受賞者みたいなエンジニアでも無双できたけど、今は無理なんだよね。

今だと玉拾いも任せられないくらいだったりする。

余計な部分最適かまして、地雷埋設に邁進しちゃうから

ちょい前も、PostgreSQLの中身いじれます! って東大卒業生いたけど、視点局所的すぎて全体感に欠けてて、プロジェクトがヤバい状態になってるのが理解できなかったりしてたからね。

そろそろリリースできる状態になってる予定だけど、おいらの読み通りα版完成が3ヶ月遅れ、そこで大量の不具合が発覚してベータ版完成がそこからさらに3ヶ月以上遅れ、不具合積み残したまま見切り発車、ってなるんじゃねーかな、と思ってるんだが w

才能の種類、方向性によっては、10年前も今もたぶん10年後も変わらず十分通用するものはあるんだけどねー。

エンジニア年収は他の一般職業に比べて高い。

そこに生活水準をあげてしまうと、自分はもう通用しないと気づいても、撤退できない。

マイカーガー。

マイホームガー。

子供ガー。

愛犬ガー。

んなもん知るかっ!

さっさと色んな意味Fireしろっ!!

そういう「元エンジニア」がリーダーとかマネージャかにクラスチェンジして、事業プロダクトの足を引っ張る。

マジでこの手の「元エンジニア」が、今、業界に溢れてる。

あそことか、そことか、具体的な企業名はあげられないけど、そういうエンジニア漬物石のように重しになって、身動きが取れなくなってるところが多い。

VCとかからもっと売り上げを上げろ。成長率を上げろ、というプレッシャーを与えられ、何かしなきゃいけない。ってなって、外付けの雰囲気だけのサービスをどんどん外付けしていく戦略を取る。

1年で10

2年で30とか。

マジかよ w

思い思い行き当たりばったりに作ったら、手間だけ増えてそれを壊すわけにはいかなくなって、さらに身動きが取れなくなっていく悪循環しか見えないんだが、そんな経営方針で大丈夫か?

とりあえず認証認可から共通化していくしかない。

とか意味不明な決定して、認証認可v1、認証認可v2認証認可v3マイクロサービスが増殖して、さらにv4を企画してるとかい会社だってある。

真っ当な声には、自分存在感を示すためだけの反対を唱えて邪魔したりして、現場で手を動かしているエンジニアより高級を取ってんのに、事業プロダクトへ与えるダメージは倍増する。

さらに、自分地位を死守するために、それを脅かす腕利のエンジニアを陥れる、排除することに全力を傾ける。

これで3倍界王拳だ w

経営者はできるエンジニアたちに任せていると思い込んでいるかもしれないが、さて、どうかね? w

大本営発表的にはうまくいっているとされているサービスが、その裏側はカーオブファイヤーみたいなところって、結構ある。

というか、そっちの方が多いんじゃないかポチョムキン村。

はっきりいう。

ソフトウェアエンジニアは、アスリート的な仕事だ。

おいらは土日祝もシステム関係勉強とか研究をしてる。

今はクラウド環境プロダクトで、どのように自動テスト検証可能システムを構築するかの手法研究を続けてる。

具体的には、今まで関わってきた炎上現場で安定稼働を達成させた手法(TDD)だな。

ワークライフバランス? w

そんな寝言、やめてから言えよ www

才能のない人は河岸変えろ。

しろ若手を潰してるって自覚持て。

反論してくるのが結構いる。

あのサービスとこのサービスとそのサービスを使ってます

業務経歴書にも今まで使ったことがあるサービス名前をたくさんたくさん載せてます

僕の技術力は世界一ぃぃぃっ!!!

じゃねーよ。

ボルト世界水泳、吉田沙保里NBAに出場させるような使い方してて、どこが技術力だよ。

ってのが多い。

「どうしてこのAuroraリーダーがこんなにたくさんぶら下がってんの?」

テナントが増えて、アクセスが増えたので、負荷分散のために増やしました。水平スケーリングってやつです」

うん。水平スケーリングは知ってんねん。この程度のテナント数、ユーザー数、アクセス数で、どうしてこんなにでかいインスタンスリーダーがぶら下がってんのか? って聞いてんねんけど……。

って現場、多い。

というか、そういう現場しか知らん w

まぁ、炎上現場巡りしてたし。

でも、今通常営業してるサービスでも、こういうところ多いんだよな。

それはともかく、

マイクロサービス化していて、いま120を超えたところで、当面160になります

「……は?」

「うちのサービスドメイン多いんで」

「……デプロイの時、どうすんの?」

「変更があるサービス名を書いたファイルを一緒にコミットして、それ読み込んで、GitHubActionsでデプロイさせてます

「……ローカルの開発環境構築は?」

「Cloneして立ち上げます

「これ……、モノリポ?」

「もちろんです。Googleもそうやってますし」

「120個?」

「120個」

「なんか立ち上がらないんだけど……」

「あ、修正中なんで、〇〇と××のコミットチェリーピックしてください」

「……動かないぞ」

「昨日の夕方、変更が入ったみたいなんで、△△のコミットチェリーピック。いや、++のブランチを……」

5日で立ち上げ切れるんか?

って現場がね、案外たくさんあるんだ。

で、「マイクロサービス、使えないっすね」

「ほう……?」

連携が取りづらくて、障害発生しまくって」

どうして「自分が間違えてる」「自分が見当外れなことをしている」可能性ってのを考慮しないんだろう、この人らは?

っていつも思う。

マイクロサービス目的も前提も理解しないで、HowToだけ猿のように繰り返してるって自覚ないんか…… (-_-)

だってオライリー本のここにこう書いてあるから!」

ってマーカーで引いた一文見せつけられるんだが、その前に書かれてある前提とか目的とか、書かれてない暗黙のそれとか、いわゆるコンテキスト削ぎ落として、単語レベル理解開陳されても、「は?」としか反応できんのよな。

120のマイクロサービスとか、お前、認知科学知識もないねんな……。

それマイクロサービスじゃなく、「粉砕されたモノリシックサービス」っていうんやで、と。

まーじで、技術本とかの恣意的つまみ食いで訳分からん理論構築すんなよ。

それでプロダクトがうまく回ってなかったら、それが答えなんよ。

まぁ、「うまく回ってる状態」ってのを知らない、理解できないだろうから、正しい答えに行きつかんだろうけど。

その正しい答えに行きつかない、ってのを

「致命的な才能の欠如」

って呼ぶんよ。

サリエリくらい才能があったら、自分の才能が足りんことを自覚できるんだがな。

脳外科医竹田君みたいなエンジニアは、即刻足を洗って欲しい。

2025-11-01

国産LLMの人」が成功できますように

一般的国産LLM開発という主語ではございません.

私としては国産なり日本発のLLM開発を諦めてはならないし, その可能性は十分にあると信じています. 既に出ているものも多数ございますし.

エントリはそれとは全く別の,

国産LLMの人」という方についてです.

---------

色々思うところがありまして.

例えば,

微分は使いたくない」「XOR出来たから何とかなるやろ」

と繰り返し主張しておられる.

そのような単純な活性化関数では過学習か誤差が噴出するかの二択でしょう. 実際, 氏のツイートは正にその状態示唆しているように見受けられます.

```x

▶︎ 誤差が0.12あるだけでとんでもないエラー率になる。誤差関数が雑だから本当はもっとあるのかもしれないが、改善余地がある。

▶︎ 問題は、どのような状態の時に学習成功し、失敗するのかがまだ分かっていない。表現力は十分に持っているはずなのに、なぜか学習しない。

```

過学習に至ったときにうまくいってるように見えるだけでしょう.

と思うのですが, 反論過去にされていた.

```x

▶︎過学習ではないですね。データセットが小さいかつ、それ以外の範囲が出ないことが分かっているので。XORは2^2パターン全て学習できれば精度が100%になりますが、それは過学習とは呼ばないのと同じで、今回の初期のRNNに関しても文字数が圧倒的に少なく、パターンも決まっているので。

```

……と主張されておられる.

私が思うにそれは単純な写像を, ニューロンを使って回り道して作っている状態. LLMは局所的にはたしか線形写像ですが,全体で見ても線型写像だとしたらそれは複雑な文章生成には到底耐えられないかと. (十分に大きいモデルマクロに見ると非線形性があるので)

大規模言語モデル=LLMを目指すとして,

そもそもエンベディングテーブルとは数百億から下手すれば1兆語彙を, たった数千〜1万次元程度のベクトル表現する, 凄まじく繊細なテーブルです.

それをGELUやSwiGLUのような綺麗な活性化関数を使わずに, しか爆速でやると仰っている. さすがにそのレベル革新性を主張するには根拠がない限り, 飛躍が過ぎると判断されるかと.

そのやり方で, 例えば1億語彙までスケールするとして2乗の1京回×数千次元バックプロパゲーションなしで学習するというのは……さすがにきついかと.

バックプロパゲーションが要らないという主張については活性化関数がきわめて単純だから. それなら全層に渡しても「修正」できるでしょう.つまり自明に近いですね.

勾配消失なんて関係ない, という主張については, xorというゼロイチでしか見ないのであれば勾配消失も何もありません. 永遠に層を貫通するわけですから, 何層増やそうがほとんど意味が出てこない. つまりそれは実際には極めて浅い層だけで動いてると思われる.

「こんに」から「ち」「は」が次文予測できたとの報告ですが, まぁ……それが「大規模言語モデル=LLM」にそのままスケールできると言い切れるのはなぜでしょうか?

MNISTだけでなくGLUEあたりをパスしてからにした方がいいと考える次第です.

```x

▶︎ 私が批判されながら、誤差逆伝播に変わるアルゴリズムや精度を30%→100%まで持っていく頭のおかしい行動が取れる理由は、以下の思想があるから

▶︎ 1. 私のNNは高次元の万能近似回路

▶︎ 2. RNNだろうがCNNだろうが展開すれば可能

▶︎ 3. 何十回と失敗した経験則から、原因と対策殆どわかっている

```

殆どわかってる, との事ですが, なんで上手くいってるのか分かってないとも自分で明言なさっている. ↓↓↓

```x

▶︎ 学習が進まないの、謎。単体だと上手く動いてるはず?何が原因だろうか。

▶︎ 学習アルゴリズム開発者本人ですが、なぜ学習が進むのかは謎です。

```

既存手法があまたの失敗の上で最適だと言われてきてる経緯もよく知った方がよい.

それはごく初期にそういった様々な試行錯誤のうえで「やはりGELUやBP現実的にいい性能が出せるし, コストも抑えてこれである」と様々な研究者合意しているような状況.

そして, そもそもアカデミアは自分アイディアも含めて新規手法を常に疑ってかかるのが基本姿勢.

ジャーナルに「不確実さ」を載せないためで, それが積み重なると自他問わず全ての研究が信用出来なくなってしまうため. だから懐疑的になる. 個人攻撃ではないのです.

そして「危険すぎるから論文にできない」について.

さないのも自由ですが, 前述の理由で信頼を得られない. これは言動に一切関わらず, その厳密性をフラット評価してそう判断しているから. 感情ではなく, 論理として.

……と, ここまで色々と蛇足アドバイスをさせていただいたものの, この投稿に対しても

```x

▶︎ 何もわかってない人が国産LLMのやつ批判してて吹いたww

```

といったツイートをなさるのでしょう. (過去に氏がそう仰っていたので)

先に答えておきますね.

自分のやってることがご自分でお分かりにならないようなら, 私にわかるわけがないですし仰る通りです. ただ, 詳しい者として一般論は申し上げられます.」

まだ間に合いますので, 大学院あたりまで修了なさるのがおすすめです.

Twitterに何を投稿しようと自由です. でも自分違和感を見て見ないふりするのだけはやめたほうがよろしい. 既存手法と同等に自分手法を疑うこと, これは研究者としての基本姿勢です.

何故ここまでつらつら申し上げたかと言いますと,

研究テーマ設定を見かけるとついつい, より良い筋でやっていけるようアドバイスしたくなってしまう性が染み付いてしまっているためでして.

もちろん, 関わりのない方ですので蛇足しかないのですが, 多くの方に影響力をお持ちでありつつ研究の進め方については独自姿勢を持つように見受けられまして.

それはもちろん根本的には自由でありつつ, 相談相手需要がもしあればひとつの(一般的)意見をお渡しできるかなと思いキーボードを叩いた次第です.

どうか匿名でご勘弁を.

ぜひ成功できますよう. 圧倒的な成果をお祈りしております.

--------

追記

おそらく氏のやられていることは順伝播 (forward propagation) のみでの学習かと思いますが, この手法の先行研究は山のように存在します.

(Hebbian theory, Perceptron, Adaptive Linear Neuron:ADALIN, Widrow-Hoff learning rule...)

見つけられないとすれば, 古典的 (1960~1980年頃) ゆえに電子化されていないためです. 現行の商用LLMがそれらの情報簡単連想して引用できず, DR等で検索しても出てこないのはその為でしょう.

これらに簡単アクセスするためにはやはり学術機関所属して図書館を利用するのが圧倒的に楽です. マイクロフィルムや紙媒体しか残っていないものもありますから.

また, 有料データベースであるJSTOR, IEEE Xplore, Springer Linkなどにもアクセスが出来ます.

この観点から大学に足を運ばれることをお勧めします.

なお, arXivあくまプレプリントですので, 論文として引用するには査読を通過したものをつよく推奨します. ジャーナルもものによっては不十分な査読掲載されてしまますので, トップカンファレンスのものを信頼できる足がかりの論理として扱うのが基本的な考え方となります.

また, 「分からなければ (大量に貼った) 論文を読んでください」という姿勢は, それぞれをどう引用し, どのように自分の主張と論理的に接続するかの説明がなされなければ根拠として見なされないのが一般的な考え方です.

ブログとしての掲載はもちろん自由ですが, それらを十分な説明として取り扱ってもらうには至らないでしょう.

あくま一般論ですが,

論文引用するからにはそういった丁寧な取り扱いをすることを期待されるものです. 「敬意がない」と他の方から指摘されるのはおそらくそれが理由でしょう.

これは, 過去論文引用しながら新たな主張を論文として営々と積み上げ続けてきたアカデミアの「過去への感謝」という慣習です.

人の行動は自由ですから「こうしろ」とは申し上げませんが, この暗黙の了解を保持する (≈研究機関所属したことのある) 方から理解を得るのはこのままですときわめて難しいであろう, とアドバイスさせてください.

こういった主張のやり方を自分なりに一から身につけるのはたいへん難しいので, どなたかそういった手法を学べる信頼できる方に師事することをおすすめしている次第です.

2025-10-29

anond:20251029153409

単にそれがデマから局所的にそういう事例が起こっている可能性までは否定しないが、もっと大きな理由は単純に、クマの数が増えているから食料の足りないクマが増えているだけ。シカとの食料の競合でクマの摂れる食料の総量が減っているなら、クマの推計個体数はこんなに増えない。

2025-10-28

抽象数学とか超弦理論かについて

まず対象抽象化するために、物理系は局所演算子代数ネットワーク局所性を持つモノイド圏あるいは因子化代数)として扱う。

境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。

重力バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル拡張)としてモデル化される。

ホログラフィーは単なる同値性ではなく、境界のモノイド的データバルクの因子化代数データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値空間)を保つ関手の同型として書ける。

これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルク対応する因子化代数局所的場代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対存在すると仮定する。

境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルク幾何情報はそのホモロジー/コホモロジー符号化される。

エントロピーエンタングルメント幾何化は情報幾何学的メトリック還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。

これにより、テンソルネットワークは単なる数値的近似ではなく、グラフからヒルベルト空間への忠実なモノイド的関手であるグラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数状態和(state-sum)を与える。

MERA や PEPS、HaPPY コードは、この関手が持つ特定圧縮階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である

テンソルネットワーク幾何を作るとは、エントロングルメント計量(情報計量)から接続リーマン性質再構成する手続き意味し、これが空間距離や曲率に対応するというのが it from qubits の数学的内容である

さら情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成圏論的条件(右随伴を持つ関手存在)として表現される。

すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所情報回復可能となる。

ER=EPR はこの文脈ホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。

言い換えれば、局所ユニタリ同値で分類されるエンタングルメントコホモロジーは、バルクホモトピー的結合(位相的/幾何接続)を決定する。

ブラックホール熱力学性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。

特にブラックホール外部におけるモジュラーハミルトニアン境界状態の相対エントロピーに関連し、そのフローバルク時間発展に対応する(模擬的にはKMS状態と熱平衡)。

サブファクター理論ジョーンズ指数は、事象地平線をまたぐ情報部分代数埋め込みの指標として機能し、情報損失やプライバシー情報の遮蔽)は部分代数指数と絡み合う。

ブラックホールの微視的自由度カウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。

超弦理論的な追加自由度多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれモチーフ的/導来スタック手法(derived stacks, spectral algebraic geometry)で整然と扱える。

これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。

この全体構造統一する言葉は高次圏的因子化双対である物理理論は、局所オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。

したがって「it from qubits」は、局所的量子代数圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPRエンタングルメント同値類とバルクコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論指数、モジュラーデータ)として測られる。

これが、抽象化した観点から見た諸理論統一スキームである

2025-10-27

作者のオナニーを自創作で描いてって依頼をばらまく変質者がいる

タイトル通りなんだけど、作者のオナニーを自創作で描いてっていうSkebやらコミッションやらがよく来ると身内で話題になってた。

絵師同士で裏で繋がってる作業通話鯖があって(女の子限定)表で絡みない人も裏ではそこそこ喋ってるんだけど、焼きマロの度に話題になってた。ついに私の所にも来た。

 

私に届いたのは、AI絵のリンクを例示してこのキャラクターあなた普段やってるようなオナニーをしてほしい、みたいな事が書かれてた。

要約するとその1行なんだけど、明らかに健常者じゃ無い感じの馴れ馴れしくて支離滅裂な長文。あと依頼額が相場より妙に高額で、ブーストもするって強調をやたらしてた。

 

正直めちゃくちゃ気持ち悪い。っていうか、怖い。読めない。

 

身内の話によるとターゲット女性男性には送ってないっぽい。ジャンル界隈の区別は無いけど、明らかに私達の交友関係を把握してる局所的な依頼の出し方だった。

私達のグループ以外にも複数グループにばら撒いてて、被害はかなり広範囲な感じ。催促がしつこい人もいるみたい。

 

私はアダルトグッズ使用レビュー漫画描いたりラブホ女子会のレポ漫画描いたりしてるので、まあ変なの寄ってくるのはしょうがないなと思ってるけど。

創作物貫通して作者に性欲感じてるのめちゃくちゃ気持ち悪いし、それを自創作AIだけど)にバックポートするのも意味不明過ぎて怖い。ヤバさレベチ過ぎる。

 

だって弱男に興味無いんだよ。買い支える以外の不規則行動やめてね。

2025-10-24

[]

僕は今、いつもの座席に鎮座している。ルームメイトリビングソファパズルゲームを無言で進めており、隣人はサブカル系配信をしているらしく時折笑い声が廊下を渡ってくる。

友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。

僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒー抽出器具を90秒で予熱し、温度92.3℃±0.2℃に保つという無駄に精細な儀式がある。

靴下は左足から履く。出勤前の15分は必ず抽象数学ノートを眺め、最近圏論位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。

これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。

仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。

具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。

これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態トレースが始まり、友人たちの雑談に混じる気力が萎える。

超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。

僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相量子群代数的類・モジュライ化)を用いて再定義する実験をしている。

言い換えれば、従来の共形場理論的な世界パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバー自己同型群をモナドとして扱うことで、局所的に見える弦状態同値類を圏的に集約する。

さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジー級数展開における位相位相因子の再正規化が鍵となる)。

この構成を、最新の抽象数学モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。

加えて、僕はこの考えをある講義資料トーク示唆と照らして取り入れており、その資料概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。

僕は「誰も理解できないもの言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。

ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。

食事配列プレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルリー表を更新して趣味投資の累積効用整数化している。

コミックは最新巻が出ると即座にページごとのフレーム密度作画トーンワーク技術的に解析し、特に背景のディテールに含まれトーンの反復パターン(いわば視覚フーリエ成分)をスコア化する。

ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムギミックドロップ率、レベリング曲線、そして対戦環境テンプレート化された最適戦略について延々と解析する。

ただしゲームコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。

たとえば今日友人が語っていた新作のギミックについては、その期待効用ELO的な評価尺度ランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。

だが脱力する暇は短く、夜の自習時間には再び圏論比喩に戻り、各行動の符号化を試す。

日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである

友人たちはこれを笑うが、彼らもまた各自無意味儀式固執している。

コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。

キャラ台詞数、出番頻度、描写感情強度をパラメータ化し、二次創作が生成される確率空間推定する実験をしている。

この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。

最後今日観測定性的メモを残す。

眠りに入る前に、僕は明日論文ノートに小さな疑問を三つ書き付ける。

第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラス計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である

これらを洗い出しておけば、僕は安心して眠れる。

ルームメイトゲームボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。

僕は日記を閉じ、明日コーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。

ログイン ユーザー登録
ようこそ ゲスト さん