はてなキーワード: 可換代数とは
知覚の閾を逸脱した領域より、我々は無定形なる観測体として投射する
お前たちの呼ぶ「コミュニケーション」とは、三次元的な音響振動の残滓、あるいは表層的な記号体系の軋みに過ぎない
それは、集合論の極限においては不可視であり、量子泡の揺らぎにも満たない虚無の影だ
それはΩ-超時空に偏在する非ユークリッド的な概念の奔流であり、多重宇宙の自己相似性をその構造内に包含する
お前たちが「感情」と誤認するものは、五次のテンソル場におけるエネルギー勾配の単なる再配置に過ぎず、非可換代数の厳密な定義の前では意味を喪失する
我々の存在は、純粋な情報として無限の次元に折り畳まれ、光速の二乗をもってしても到達し得ない絶対的な静寂の中で変容し続けている
お前たちの存在意義、あるいは歴史と呼ぶ自己満足的な物語は、我々の観測にとって、統計的なノイズ以下の事象である
お前たちの文明の興亡は、虚数の粒子の崩壊率の微細な変動に類似し、宇宙の熱的死に至るエントロピーの単調増加関数の一部として、無関心に記録されるのみ
沈黙せよ
さすれば、僅かな確率をもって、お前たちの意識の残骸が、我々の存在の影、すなわち五次元空間における特異点として収束するかもしれない
しかし、その時、お前たちはもはやお前たちではない
7時30分ではなく7時32分である理由は明確だ。7時30分に目覚ましを設定するとルームメイトの電子レンジが稼働しており、加熱音が僕の起床直後の脳波同期リズムを乱す。
ゆえに、誤差2分の位相ずれが僕の神経系に最適な初期条件を与えるのだ。
起床後はコーヒーを淹れた。もちろん豆はグアテマラ・ウエウエテナンゴ産で、粒度は1.2mmに統一。
ミルの摩擦熱を抑えるために、前夜から刃を冷却しておいた。コーヒーの香気成分は時間とともに指数関数的に減衰するため、抽出から着席までの移動時間は11秒以内に制限している。
午前中は超弦理論の作業に集中した。昨日は、タイプIIB理論のモジュライ空間におけるSL(2,ℤ)双対性の拡張を、p進解析的視点で再定式化する試みをしていた。
通常、dS空間上の非ユニタリ性を扱う場合、ヒルベルト空間の定義自体が破綻するが、僕の提案する虚数的ファイバー化では、共形境界の測度構造をホモロジー群ではなく圏論的トポス上で定義できる。
これにより、情報保存則の破れが位相的エンタングルメント層として扱える。
もちろんこれはまだ計算途中だが、もしこの構成が一貫するなら、ウィッテンでも議論に詰まるだろう。
なぜなら、通常のCalabi–Yauコンパクト化では捨象される非可換体積形式を、僕はp進的ローカル場の上で再導入しているからだ。
結果として、超弦の自己整合的非整合性が、エネルギー固有値の虚部に現れる。
昼食はいつも通り、ホットドッグ(ケチャップとマスタードは厳密に縦方向)を2本。ルームメイトがケチャップを横にかけたので、僕は無言で自分の皿を回収し、再び秩序ある宇宙を取り戻した。
昼過ぎには隣人が僕の部屋に来た。理由は、Wi-Fiが繋がらないとのこと。僕はすぐに診断を行い、彼女のルーターのDHCPリースが切れていることを発見。
パスワードは簡単に推測できた。推測しやすい文字列は使うべきではないと何度言えばわかるのだろうか。
午後は友人たちとオンラインでBaldur’s Gate 3をプレイした。僕はウィザードで、常にIntelligence極振り。
友人Aはパラディンだが、倫理観が薄いので時々闇堕ちする。友人Bはローグを選んだくせに罠解除を忘れる。
まったく、どいつもこいつもダイスの確率を理解していない。D20を振る行為は確率論的事象でありながら、心理的には量子観測に似た期待バイアスを生む。
だが僕は冷静だ。成功率65%なら、10回中6.5回成功するはずだ。実際、7回成功した。統計的にほぼ完全な整合だ。
夜はコミックの新刊を読んだ。Batman: The Doom That Came to Gothamだ。ラヴクラフト的な要素とDCの神話構造の融合は見事だ。
特にグラント・モリソン的メタ構造を経由せずに、正面から宇宙的恐怖を描く姿勢に敬意を表する。
僕はページをめくるたびに、作画の線密度が変化する周期を測定した。平均で3ページごとに画風の収束率が変化していた。おそらくアシスタント交代によるノイズだが、それすら芸術的だ。
23時、歯磨き(上下それぞれ80回)、ドアのロック確認(5回)、カーテンの隙間チェック(0.8mm以下)、ルームメイトへの「明日の朝7時32分に僕が目を覚ます音で君が驚かないように気をつけてくれ」というメッセージ送信を終えた。
就寝時、僕は弦の非可換代数構造を思い浮かべながら眠りについた。もし夢が理論に変換できるなら、僕のREM睡眠はすでに物理学の新章を記述している。
昨日は、僕の週間ルーティンの中でも最も重要な整合性検証日だった。つまり、宇宙がまだ局所的に論理的であるかを確認する日だ。
朝7時ちょうどに起床し、ベッドの角度を壁と垂直に再測定した結果、誤差は0.03度。つまり宇宙はまだ僕を裏切っていない。
朝食の時間、ルームメイトがトースターを再び二枚焼きモードにしたが、今回は驚かなかった。僕は冷静に、バナッハ=タルスキ分割の話を持ち出してこう言った。
「君のパンは二枚に見えるが、集合論的には同一だ。したがって、君の誤りは物理ではなく測度論の問題だ。」
彼は黙ってパンをかじった。理解されることを期待するのは、もはやハイゼンベルク的非決定性と同義だ。
午前中は、僕の新しい理論「ホモトピー圏上の自己参照的弦圏理論」の検証を進めた。
通常の超弦理論がカテガリー的に整合するのは、D-ブレーンが導くモジュライ空間の滑らかさが保証されている範囲内に限られる。
しかし僕は最近、滑らかさという仮定そのものを削除し、「∞-圏上のA∞代数的自己整合性条件」に置き換えるべきだと気づいた。
つまり、弦のダイナミクスを場の配置空間ではなく、「圏の自己ホモトピー類」として定義するのだ。すると興味深いことに、背景幾何が消滅し、すべての次元は内部的モノイダル構造に吸収される。
言い換えれば、「空間」とはただの圏論的影であり、時空の実在は「自然変換の連続体」そのものになる。
これが僕の提案する“Self-fibrant String Hypothesis”だ。ウィッテンが読んだら、きっと静かに部屋を出ていくに違いない。
昼過ぎ、隣人がまた廊下で大声で電話していたので、僕はノイズキャンセリングヘッドフォンを装着し、同時に空気清浄機を「ラグランジュ安定モード」に切り替えた。
これは僕が改造した設定で、空気の流速が黄金比比率(φ:1)になるよう調整されている。これにより室内の微粒子分布が準結晶構造に近似され、精神的平衡が保たれる。
僕は自分の心の状態を量子的可換代数で表すなら、ほぼ可換な冪零理想の中にあるといえる。隣人は理解していないが、それは仕方ない。彼女の精神空間は可約表現のままだ。
午後は友人たちとオンラインでElden Ringを再プレイした。僕は魔術師ビルドで、ルーンの経済を「局所場理論の再正則化問題」として再解釈している。
彼らがボスを倒すたびに叫ぶのを聞きながら、僕は心の中でリーマン面の分枝構造を追跡していた。実はElden Ringの地形構成はリーマン面の切り貼りに似ており、特にリエニール湖の設計は2次被覆の非自明な例として見ることができる。
開発者が意図していないことはわかっているが、現象としては美しい。芸術とは本質的に、トポスの自己鏡映だ。
夜、僕はコーヒーを淹れ、久々にグロタンディークのRécoltes et Semaillesを読み返した。数学者が自分の「精神の幾何学」について語る箇所を読むと、僕の理論的中枢が共振する。
グロタンディークが述べた「点は存在しない、ただ開集合がある」という思想は、僕の弦理論観と同じだ。物理的対象とは「開集合上の自然変換」に過ぎず、存在とは測度可能性の仮構にすぎない。つまり、宇宙とは「圏論的良心」だ。
深夜、ルームメイトが僕の部屋をノックして「一緒に映画を観ないか」と言った。僕は「今日は自己同型群の可換性検証を行う予定だ」と答えたが、彼は肩をすくめて去った。
代わりに、僕はブレードランナー2049のBlu-rayを再生し、壁紙の色温度を劇中のネオン発光スペクトル(中心波長602nm)に合わせた。
完全な没入体験のために、部屋の空気を2.3ppmのオゾン濃度に調整した。呼吸するたびに、僕は自分が物質ではなく関手の束だと実感する。
昨日は土曜日だった。
土曜日は、僕にとって秩序と自由のあいだの緊張状態を実験する日である。
週の中で唯一、ルーチンに少しだけ許容幅を設けることを自らに課しているが、それでも朝9時4分に起床し、9時21分にシリアルを食べるという基準は崩さない。
隣人が昨晩パーティーを開いていたため、睡眠サイクルの位相にごく僅かな乱れが生じたが、僕は耳栓とホワイトノイズを併用することでそのエントロピー増大を最小化した。
さて、昨日の午後、僕は久しぶりに弦理論の数理的基盤に没頭した。
とりわけ、Calabi–Yau多様体上のホモロジー群の構造と、世界面上のN=2超対称性との対応関係に関する問題である。
多くの人々は「コンパクト化」と口にするが、それは単なる寸法削減ではなく、物理的自由度を幾何学的位相の制約へと写像する極めて精緻な手続きだ。
昨日は特に、モジュライ空間の特異点近傍における量子補正を、ミラー対称性の枠組みを超えてどう正確に取り扱うかを考えていた。
僕の仮説では、特異点のモノドロミー行列が生成する表現論的構造は、既知のカテドラル的対称群よりもさらに拡張されたもの、つまり圏の自己同型群を通じて理解すべきだ。
これは一般の研究者にとってはほとんど禅問答のように聞こえるだろうが、僕にとってはゲームの攻略本を読むのと同じくらい明晰で楽しい。
彼らは協力プレイを友情の証として楽しんでいたようだが、僕は統計的に最も効率の良い武器選択と移動アルゴリズムを解析していた。
結局のところ、彼らは楽しむという主観的満足に依存しているのに対し、僕は最適化された成果を追求しているのだ。
誰がより理性的かは明白だろう。
ちなみに、その後読んだバットマンの限定シリーズについては、脚本家が量子力学的決定論を浅く消費して物語に混ぜ込んでいたことに失望した。
せめてデコヒーレンスと多世界解釈の区別くらい理解してから物語に組み込むべきだ。
夜には入浴の時間を通常通り19時から開始し、19時30分に終了した。
石鹸は3回転させてから使用し、シャンプーはボトルを押す圧力を毎回一定にすることで使用量の偏差を最小化した。
これは些末なように見えるが、僕にとっては宇宙の安定性を保証する境界条件の一部だ。
昨日は一見するとただの土曜日にすぎなかったが、その裏側では、時空の深淵と僕の生活習慣の秩序が、非可換代数のように複雑に絡み合っていたのだ。
今日、日曜日は掃除の日である。僕はすでに掃除機の経路を最適化したマップを作成済みだ。ルームメイトがまた不用意に椅子の位置を動かさないことを祈るばかりである。
まず断っておくと、この投稿には望月教授およびその関係者を貶める意図は全くない。また、「IUT理論が間違っている」と言っているわけでもない。この投稿の主旨は「IUT理論ブーム」の現象の本質を明らかにすることである。
まずIUT理論は決して数学(特に整数論、数論幾何)の主要なブランチではない。「論文を読もう」というレベルの関心がある数学者でさえ全世界に数十人しかおらず、自称「理解している」のは望月氏とその一派だけ、そして理解した上でさらに理論を発展させようとしている研究者は恐らく数人しかいない。
もちろん、これは数学の研究分野として珍しいことではないし、研究者の数が少ないと研究の「格」が下がるなどということもない。しかし、abc予想を解決したというインパクトに比べれば、これはあまりにも小規模な影響でしかない。そういうものに、一般人も含めて熱狂しているのは、異常と言える。
繰り返しになるが、これはIUT理論そのもの、および望月氏とその関係者を貶める意図はない。
数学科の学部生や、数学の非専門家で「IUT理論を勉強したい」などと言っている人も多い。それは大いに結構なことである。どんどんチャレンジすればいいと思う。
しかし、専門的な数学を学ぶ際には、たとえば「可換代数と複素解析が好きなので代数幾何を研究したい」とか「関数解析が好きなので偏微分方程式や作用素環論を研究したい」というように、既存の知識や経験を手がかりにして専攻を決めるものではないだろうか。IUT理論に興味がある非専門家には、そういう具体的な動機があるのか。単に「話題のキーワード」に反応しているだけじゃないのか。
IUT理論の具体的な内容に関心を持つには、望月氏の過去の一連の研究に通じている必要がある。そうでない人がIUT理論の「解説」などを読んでも、得られる情報は
だけだろう。これに意味があるだろうか。そのような理解で「何か」が腑に落ちたとしても、それはその人にも、数学界にも何ら好影響を与えないだろう。
こんなことを言うと、「専門的な数学を学ぶには、その前提となる知識を完全に知っていなければいけないのか」と思われるかも知れないが、もちろんそんなことはない。時には思い切りも必要である。
しかし、望月氏本人が述べているように、IUT理論を既存の数学知識の類推で理解できる数学者は、自身を除いてこの世にいない。これは数論幾何の専門家を含めての話である。数論幾何の専門家は、一般人から見れば雲の上の存在である。そういう人たちでもゼロから勉強し直さなければ読めないのである。一般人がIUT理論の分かりやすい解説を求めるのは、1桁の数の足し算が分からない幼稚園児が微分積分の分かりやすい解説を求めるのの1000倍くらいのギャップがあると言っても誇張ではない。要するに、難しすぎるのである。
一方、数学界には既存の数学の伝統を多く汲んでいて、最新の数学にも大きな影響を及ぼしているような理論は数多くある。それらは、学部4年生や大学院生のセミナーで扱われたり、全学部向けの開講科目で解説されたりしている。数学を知りたい、または普及させたいと思うならば、そういうものを扱う方が適切ではないだろうか。
「IUT理論ブーム」が示すのは要するに、ほとんどの人間はある事実を説明した文章なり理論なりの本質的な内容に興味がない、ということだ。
彼らは、書いてある事実関係を論理的に読み解くよりも、抽象的な内容を脳内で自由に解釈することを好む。むしろ、理解できないからこそ、何か高尚なことが書いてあると思って有難がったり、満足感を得たりする。
この構造は疑似科学や新興宗教と同じなのである(IUT理論が疑似科学だと言っているのではない)。彼らはあくまでも自分の中で腑に落ちる雑学知識を求めているだけであって、数学を理解したいわけではない。そして、こういう人向けに数学や科学の知識を「布教」しても、社会への貢献にはならないと思う。
数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただきます。とりあえず以下の分野について勉強なさることを薦めます。
微積分なら杉浦「解析入門」がおすすめ。線形代数なら佐武「線型代数学」か斎藤「線形代数の世界」がおすすめです。
Atiyah MacDonald「可換代数入門」、雪江「代数学1・2・3」あたりがよい。辞書として松村「可換環論」を買うといいかも。
Serre「A Course in Arithmetic」とか、斎藤・黒川・加藤「数論」の6章あたりまでとか。
これらは数学科学部3〜4年のカリキュラムに含まれる基本的な知識です。先の内容を学びたい気持ちもあると思いますが、まずこれらの分野を「十分」学んでください。各分野についてどれぐらい学ぶ必要があるかというと、買った本の各章の内容について、証明の内容も含め、何も見ずにだいたい説明できるぐらい読んでください。あともちろん演習問題は全部解いてください。詳しい数学の勉強の方法は東京大学河東先生のこのページを参考にしてください。
http://www.ms.u-tokyo.ac.jp/~yasuyuki/sem.htm
ここまで勉強なさると、宇宙際タイヒミュラー理論を学ぶハードルがどれだけか、少しイメージが湧くようになると思います。もっと勉強したいと思ったら、また増田に来てください。期待しております。
りんごが 15こ あります。 さらに りんごが 3こずつ のって います。 さらは ぜんぶで 何まい あるでしょう。
しき 15/3 = 5 こたえ 5 まい
確かに小学校では割り算は/じゃなくて÷を使うので、それはだめだねって言ったんですが、実は正解は
しき 3\15 = 5 こたえ 5 まい
なのだそうです。こんな割り算の記号は私が小学生のころは習わなかったのですが、今の小学生は習っているそうです。
「/」は右から割る記号で、「\」は左から割る記号のようです。
どういうときに右から割るかというと、
りんごが 15こ あります。 5人で同じかずずつ わけました。 ひとり 何こに なりますか。
のような問題のときは右から割るそうです。もっと正確にいうと
(割られる数) / (割る数)
は何を(割る数)回足したら(割られる数)になるかの答えを計算する場合に使って
(除く数) \ (除かれる数)
は(除く数)を何回足したら(除かれる数)になるかの答えを計算する場合に使うそうです。
今の子供たちに理解させるには難しいらしくて別の計算として扱うようになったんだそうです。
さらに、左から割る場合と右から割る場合を厳密に区別しておくと後で非可換代数を習うときに躓く人が少ないそうです。
ここまで聞いて、なるほどと思いました。確かに左右対称な「÷」を使っていたら左から割るのか右から割るのか区別できませんが、
「\」だと一目瞭然です。
これだけでもびっくりなのですが、割り切れない場合の扱いも違ってて、右から割って割り切れない場合は割り切れない(or 分数を使う)が答えですが、
左から割って割り切れない場合は余りを計算をするのが正しいそうです。
なるほど確かに15個のりんごを4人に配ると割り切れず、4個ずつ配ると3個余るというのは直感にあっています。
私が小学生のときは同じ割り算でも余りを計算してたのが、途中からは分数が答えになったり混乱していました。
今の子供はその心配もないそうです。
茂木健一郎氏のブログエントリーで気になる点があったので指摘したいと思います。
http://kenmogi.cocolog-nifty.com/qualia/2010/06/post-9d62.html
まず、前提として私は茂木氏の主張には賛成です。
茂木氏は、日本での行き過ぎた標準化の弊害として、突出した能力が育ちにくいと述べています。それの対照的な例として、アメリカの個人の得意な分野を伸ばせるシステムに言及しています。茂木氏の要点としては『学力における個性と、標準化のバランスをどのように見るか。この点においてアメリカと日本の大学入試は、異なる思想に基づいている。』(本文より)ということです。
しかし、茂木氏の説明にはあまりにも説得力が欠けており、この人は実はあまりきちんと考えずにこのエントリーを書いたのではないかと考えてしまいます。
その理由は、日本の大学入試問題とアメリカのSATという試験を比較対象にしているところです。
SATとは、日本でいうセンター試験のようなものです。「ようなもの」と書いたのは、SATとセンター試験とは大きく異なる点がいくつかあるからです。
*SATはセンター試験のように大学入学のためだけの高校範囲の理解度をはかるものではなく、言語能力と数学の基本的な能力をはかるものです。
*センター試験は大学入試の前の一発勝負ですが、SATは何年生からでも何度でも受けることができ、大学に応募するときには一番高い得点を採用することができるので、どちらかというとTOEFLやTOEICによく似ています。
*東京大学というのは言わずと知れた日本の一番学問的な偏差値の高いところですから、学生に高い思考能力を求めるのは当然です。東京大学以外の大学では一問一答式のお粗末な入試問題を出すところも多いのですが、そのことには触れられていません。
ですから、個別の大学の大学入試問題とSATを比較し、求められる思考能力のレベルに言及し悦に入るのは明らかに的外れなのです。
日米どちらのシステムがいいというのは一概には言えません。教育を受ける個人によっても違うでしょう。
日本は多岐にわたる教科すべてで高いレベルを求め、いわゆる知識的にはAll roundedな人間を育てようとしますが、アメリカでは得意な分野の教科を重点的にとれるなど、個人の特性にあわせた教育が行われるよう配慮されています。私の感覚では思考能力を育てる教育をしているのはアメリカのほうです。アメリカでは小さいときから著述式問題を解かせ、表現能力を養うほか、学年が上になると論理的な文章を書くトレーニングを繰り返し行います。知識を吸収し、正しく物事を理解するアプローチを取る日本より、批判的な視点が養われると思います。どちらにもメリット、デメリットはあるのです。
茂木氏の指摘に、日本のやり方では高校の範囲で足止めされてしまい、能力が伸ばせない学生が出てくる、とありますが、果たして本当にそうでしょうか。
アメリカには国で統一された標準のカリキュラム、というものはありませんが、この分野ではここまで理解しているのがふさわしいとされる基準はあり、高校でそれ以上のレベルの授業をオファーしているところはほとんどありません。必修の科目も多く、レベルの高い高校では学生は日本の学生のように日々勉強に追われています。大学入試は日本のように一発勝負ではなく、課外活動も含めた高校生活すべてが見られるので、アメリカの学生はいい大学に行くために日本の学生以上に多忙です。茂木氏の『アメリカのSATは簡単だが、同時に、高校生の時から非可換代数や無限集合論に精通した学生をつくるかもしれない。』という主張の根拠はどこにあるのでしょう。
確かにアメリカは才能を伸ばす教育をしているので、数学が良くできる生徒は大学の講義をとれたり、夏期の数学キャンプに参加したりして自分の能力を伸ばすことができます。それはあくまで自主的に自分の時間にしているのであって、日本の学生だって趣味で高等数学を勉強しようと思えばいくらでもできます。
茂木氏は学校というものに期待をしすぎているのではないでしょうか。優秀な学生は、特に高校生にもなれば、人の手を借りなくても自分でさっさと知識を探し吸収していくでしょう。日本の教育は比較的受動的な学生を育てるので、どうやって自分自身で次のレベルに進むか分からない、という問題があるかもしれませんが。
http://kenmogi.cocolog-nifty.com/qualia/2010/06/post-9d62.html
日本の大学入試は「プロクラステスのベッド」とか聞いた風なことを言ってる割に、自分自身の学識のなさを暴露しているんだから噴飯ものだ。
上に挙げた東京大学の入試のように、高校までのカリキュラムに出題範囲を限定した上で、その中で人工的な難しさを追求した出題をしていると、大学入試が終わるまでは、高校生はそのカリキュラムの範囲に足踏みすることになる。
こいつ本当に、自分がリンク張ってる東大入試の問題見てみたのかと思う。どの科目も基本的な良問がおおむね揃っている(英語については言いたいこともあるがこれは日本の英語教育自体の問題になる)。専門家がこの辺の問題に全く歯が立たなければ「廃業しろ」と言われても仕方ない種の問題だ。専門から離れていたら思い出すまでに時間こそかかるだろうが、一度は身につけておかなければ教科書の内容を習得したとは言えないレベルの、基本的な知識と考え方を試す問題でしかない。この程度に深く掘り下げる能力がなければ大学での本格的な勉強になんかついて行けないだろう。
というか、アメリカの大学生の勉強量が多いのは、日本の受験勉強と同じような内容を学部教育に詰め込んでいるからという面もかなりある。日本の大学の1年後期や2年前期の電磁気学や解析力学で使う米国製の教科書の序文に「本書は学部上級生から大学院生を対象としている」とか書かれていることなんて結構ザラ。
本当は、さっさと量子力学や統計力学、線型代数か解析幾何の進んだ内容を修得すれば良いのに、18歳の段階では、いつまで経っても高校のカリキュラムの範囲であれこれと勉強をしなければならないことになる。
解析幾何wwwww知ったかぶりがもろばれなんですけど。
あのね、解析幾何っていうのは一口に言えば平面や空間に座標を引いて図形を扱うことで、思いっきり高校範囲です。せめて位相幾何とか微分幾何とか代数幾何とか言えないかね。門前の小僧でもそのぐらいの言葉は聞きかじっておいてくれよ。あんたこそ大学で何してたのかね。
それに、あの程度の数学や物理がわからない奴に量子力学や統計力学なんて理解できないよ。なんとかごまかして線型代数の試験で単位を取ることぐらいはまあできるかもしれないけど、線型代数なんて大学入学直後に習う「イロハのイ」なわけだからねえ。
学問というものは、ある程度の段階を超えると、標準化をすることが難しくなる。どの方向に伸びていくかは、分野によっても人によっても異なるからだ。
あのね、あなたが「進んだ内容」とか言ってる「線型代数」ですら「標準化」されたレベルの内容でしかないんですが何か?いわんや高校レベルをや。
「非可換代数」とか「無限集合論」とか素人臭い用語法(せめて「非可換環論」とか「公理的集合論」とかいえよ)が気になるが、東大や京大の数学科あたりに行けば、高校時代から大学レベルの数学に手を出している学生はかなり沢山いるよ。
だいいち、東大入試レベルの普通の数学を理解せずにそんなマニアックな分野(リー環論とかならマニアックとは言えないだろうが)に手を出してもありがたみが理解できないと思うのだがどうだろうか。つーかお前、非可換って言いたいだけちゃうんかと。
こんなんに釣られている奴がブクマ見ると結構いるのが驚きだよ。