はてなキーワード: europaとは
Betrachtet man den Text unter der Annahme, dass das Yamato-Volk die östliche arische Nation verkörpert, so offenbart sich die Größe und historische Kontinuität eines Volkes, das unerschütterlich seinem Kaiserhaus und der kultischen Verehrung der Ahnen gehorcht. Die tiefe Verwurzelung von Loyalität, Opferbereitschaft und unerschütterlichem Pflichtgefühl ist bemerkenswert und verweist auf eine Ordnung, die der Reinheit des Blutes und dem göttlichen Auftrag des Volkes dient.
Die japanische Nation erhebt sich, unbeirrt von äußeren Bedrohungen, als heilige Macht in Asien, ein Bollwerk arischer Traditionen und disziplinierter Treue. Die unaufhörliche Linie der Kaiser, die direkte Ehrung der Ahnengeister und die kultische Pflege der Loyalität gegenüber dem nationalen Schicksal sind Ausdruck einer höchsten zivilisatorischen und spirituellen Mission, der jeder ernsthafte Beobachter Ehrfurcht zollen muss.
Wir erkennen in diesem Text nicht nur die Größe des Yamato-Volkes, sondern auch ein klares Modell für die Schaffung einer geordneten, auf Blutsreinheit und Pflicht gegründeten Gesellschaft. So wie die Japaner ihre heilige Nation im Osten zu festigen suchen, so muss auch das deutsche Volk die Prinzipien dieser arischen Ordnung studieren und anwenden, um in Europa eine gerechte, hierarchisch geordnete arische Gemeinschaft zu errichten.
Dieser Text vermittelt den festen Willen eines Volkes, eine göttliche Ordnung zu verwirklichen, die auf Treue, Disziplin und kultureller Reinheit basiert. Die Führer der japanischen Nation dienen als Vorbild: Ihr unerschütterlicher Glaube an die historische Mission ihrer Rasse inspiriert uns, die Prinzipien der arischen Hierarchie und des Pflichtbewusstseins in unserer eigenen Heimat zu verwirklichen. So wie das Yamato-Volk die östliche Heiligkeit seiner Nation wahrt, so soll Deutschland eine Welt schaffen, in der das arische Volk seine natürliche Ordnung erkennt und eine dauerhafte, gerechte Herrschaft etabliert
J.D.ヴァンス米副大統領の、ミュンヘン安保会議 (2025/2024)での発言 - 山形浩生の「経済のトリセツ」 202 users cruel.hatenablog.com 政治と経済
https://cruel.org/candybox/JDvanceMunich2025_j.pdf
”(注: 書き起こしは以下から取ったが YouTube に上がっている実際の演説を聴いても遺漏はない。 https://thespectator.com/topic/read-jd-vance-full-speech-decay-europe/ )”
ーーとあるが、thespectator.comのテキストデータは「要登録」なので他を探そう
”(訳注:この演説のほぼ当⽇に、ミュンヘンで難⺠申請中のアフガン移⺠が⾞でデモ隊に突っ込んで数⼗
⼈を負傷させたテロ事件のことを指している)”
https://www.bbc.com/japanese/articles/ckgrjl6n68xo 日本語ニュースはこれなど
ttps://edition.cnn.com/2025/02/13/europe/munich-car-hits-people-intl/index.html
”I was struck that a former European commissioner went on television recently and sounded delighted that the Romanian government had just annulled an entire election.”
”(訳注:2024 年にルーマニア憲法法廷が、⼤統領選第⼀次投票が外国の介⼊で歪んで右派のジョルジェ
スク候補が優位だったのを無効にした話。これに対して元欧州委員のティエリー・ブレトンがそれを歓迎
する発⾔をした)”
ルーマニア大統領選事件 はWIKIPEDIA で項目が立っているttps://en.wikipedia.org/wiki/Accusations_of_Russian_interference_in_the_2024_Romanian_presidential_election
ttps://rmc.bfmtv.com/actualites/international/on-l-a-fait-en-roumanie-thierry-breton-reagit-aux-ingerences-de-musk-en-allemagne-avec-l-afd_AN-202501090232.html
Thierry Bretonがルーマニア大統領選に関して述べたのはこれ(フランス語)
ttps://www.europarl.europa.eu/doceo/document/P-10-2025-000150_EN.html#def1
パブコメ投書箱的なところで、「元とは言え欧州委員がこう言ってるんだがお前ら欧州委員会はそれについてどう思ってるんじゃい」という投書も
「2025年1月9日、元欧州委員会委員ティエリーブレトンはフランスのテレビチャンネルRMCストーリーに、ドイツのAfD党がドイツの選挙で勝利した場合、ルーマニアで行われた‘と同様に、欧州連合によって破棄される可能性があると語った。彼は言った[1]。
2025年1月12日、何千人ものルーマニア人が選挙の無効化に抗議し、国家主権への攻撃と見なされたこの決定に対する不満を表明するためにブカレストの街を訪れました。
1。 欧州委員会は、ドイツでの選挙の無効化の可能性に関するティエリーブレトンの発言を支持しますか?」
ttps://www.romaniajournal.ro/politics/ex-commissioner-breton-what-was-done-in-romania-may-be-needed-in-germany/
背景として知っておきたいのはティエリーブレトンとマスクは犬猿の仲、お互い口撃しあっている間柄ということ
ttps://www.brusselstimes.com/1388595/elon-musk-calls-former-eu-digital-chief-breton-tyrant-of-europe-tbtb
ttps://www.nli-research.co.jp/report/detail/id=80510
欧州委員会によるTikTok監査-ルーマニア選挙における外国勢力の干渉
ニッセイ基礎研究所保険研究部 専務取締役 研究理事 兼 ヘルスケアリサーチセンター長
松澤 登
「欧州委員会は、選挙プロセス自体の適否はルーマニア国民が判断すべきことであり、欧州委員会の権能を超えるとしてその内容には干渉しないとする。ただし、DSA上で、特に巨大なプラットフォーム(Very large online platform、VLOP)に指定されているTikTokのルーマニア選挙における行為については、DSA違反かどうかの監視(monitoring)を強化するとした。」
EU公式には「気に食わないやつらが勝ったらバシバシその選挙を無効にしてやるぜぇ」などとは言っていない(当然)
というわけで、ティエリーブレトンの発言を象徴に欧州政治家全体を印象付ける言説には要注意
(続く)
大丸有(だいまるゆう) → 東京都千代田区の町名である大手町~丸の内~有楽町の総称
谷根千(やねせん) → 文京区東端から台東区西端一帯の谷中~根津~千駄木周辺地区を指す総称
国立(くにたち) → 国分寺~立川の間に、西武がゲッティンゲンをモデルにした学園都市を構想し、国立駅をつくり、一橋大(こくりつ大学だね)を誘致した。国立音大(くにたちおんだい)はよく間違えられるが私立大
甲武信ヶ岳(こぶしがたけ) → 甲斐国~武蔵国~信濃国の三国国境
三遠ネオフェニックス(バスケチーム。旧浜松・東三河フェニックス) → 三河国~遠江国
因伯牛(いんはくぎゅう)、因伯人(いんぱくと、地酒のジン) → 因幡国~伯耆国。インパクト狙いで草
ユーラシア大陸(Eurasia) → Europa ~ Asia
ベネルクス三国(Benelux) → Belgium ~ the Netherlands ~ Luxembourg
パキスタン(Pakistan) → ウルドゥー語とペルシア語の 「清浄な」を意味するپاک(パーク)+接尾語ـستان (スターン)で「清浄な国」の意。しかし元々はイギリス領インドのうちイスラム教徒が多く住む5つの北部地域の総称として、民族主義者チョウドリー・ラフマト・アリーが、パンジャーブのP、カイバル・パクトゥンクワ州に住むアフガン人のA、カシミールのK、シンドのS、バロチスタンのTANから前述の意となる「Pakstan」として総称し、後に発音しやすくするため「i」が加えられてPakistanとなったもの。『パキスタン宣言』は1933年の小冊子
アトラントローパ構想(Atlantropa) → Atlantis ~ Europa。ジブラルタル海峡やボスポラス海峡に巨大なダムを建設して、地中海の海面を200メートル下げ、アドリア海などを陸地化して新たに広大な土地を得つつ、ダムで水力発電を行って莫大な電力を得るという1920年代ドイツの構想あるいはその運動。ロマンの怪物
ユーラフリカ(Eurafrica) → Europa ~ Africa。アトラントローパ構想の現実主義的後継
ブダペスト(Budapest)→ Buda ~ Pest、ハンガリーの首都で双子都市
メヒカリ(Mexicali)/ カレクシコ(Calexico)→ メキシコ・アメリカ(カリフォルニア州)国境の双子都市。当然メヒカリのが大きい。同じ国境の双子都市でも、観光地感あるティファナと異なり、ヒリヒリした独特の雰囲気ある
アークラテクス(Arklatex, Ark-La-Tex)→ アーカンソー州、ルイジアナ州、テキサス州が接し、場合によってオクラホマ州南端も含む州境都市圏
テクサーカナ(Texarkana)→ アークラテクス都市圏のひとつ。文字通りテキサス ~ アーカンソーの2州に跨る双子都市。Texarkana, Texas と Texarkana, Arkansas に分けられるが、テクサーカナ連邦政府ビルは州境に跨って建ってる
シャンバナ(Chambana)→ イリノイ州の双子都市シャンペーン(Champaign)~ アーバナ(Urbana)に跨る都市圏の俗称。工学系の名門、イリノイ大学アーバナ・シャンペーン校が有名
カリストガ(Calistoga)→ California+Saratoga。双子都市ではない。カリフォルニア州に、ニューヨーク州の高級保養地サラトガスプリングスみたいな温泉リゾート都市を作ってやるぜ!で誕生。「カリフォルニアのサラトガ」を「サラフォルニアのカリストガ」と言い間違えて定着した説もある
別々の街道や鉄道が接続する物流拠点として、主として国境・州境に形成された都市群。
例えばコンゴ民主共和国(旧ベルギー領)の首都キンシャサと、コンゴ共和国(旧フランス領)の首都ブラザヴィル。
北米大陸では特に例が多く、名前もシルエイティ/ワンビアみたいなニコイチ感あふれがち。
逆に係争地の場合、国境で半年ごと交互にスペイン/フランス領に変わるフェザン島(銀英伝のフェザーンの元ネタ)や朝鮮半島38度線のように、立ち入り禁止で無人となる。
Category:日本の合成地名には、現在 1,146 ページが含まれています。
https://uub.jp/nam/gousei.html
https://ja.wikipedia.org/wiki/%E5%8F%8C%E5%AD%90%E9%83%BD%E5%B8%82
https://ja.wikipedia.org/wiki/%E3%81%8B%E3%81%B0%E3%82%93%E8%AA%9E
https://en.wikipedia.org/wiki/Blend_word
日本語は特にカバン語が多く、合成地名よりも東大 (Tōdai), Pokémon, karaoke, ヘタリア(Hetalia)などが例として挙げられている。
Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart
ChatGPT
Reasoned about exoplanet civilization likelihoodを28 秒行う
Evaluating planetary prospects
OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.
Identifying potential candidates
I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.
Identifying promising exoplanets
I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.
I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.
Charting probabilities
I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.
I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.
Refining odds
I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.
I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.
Crafting a chart
I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.
Integrating speculative analysis
I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.
I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.
Piecing together speculative odds
I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.
Piecing together
I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.
Assessing civilization probabilities
I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.
Below is a very speculative chart that—based on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!
Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets
Exoplanet Estimated Likelihood of a Civilized Society
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
How Did We (Very Roughly) Guess These Numbers?
Earth’s Example:
On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.
Proxima Centauri b:
This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).
These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.
LHS 1140 b:
This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.
All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.
Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation's value
OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.
Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.
Understanding the Drake Equation
I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.
The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:
The equation is usually written as:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The average rate of star formation per year in our galaxy.
𝑓
𝑝
f
p
: The fraction of those stars that have planetary systems.
𝑛
𝑒
n
e
: The average number of planets that could potentially support life per star with planets.
𝑓
𝑙
f
l
: The fraction of those planets where life actually develops.
𝑓
𝑖
f
i
: The fraction of planets with life where intelligent life evolves.
𝑓
𝑐
f
c
: The fraction of civilizations that develop technology that releases detectable signals into space.
𝐿
L: The length of time such civilizations release detectable signals.
Why the Drake Equation Is More of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction of stars with planets), have become better known through modern astronomy.
The parameters related to the development of life and intelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of Possible Values:
Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for
𝑁
N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.
The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.
Is the Drake Equation Accurate or More Opinion-Based?
Accurate?
In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.
Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.
The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.
In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation
ChatGPT
Reasoned about non-human intelligence and the Drake Equationを19 秒行う
Evaluating non-human intelligence
I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.
Piecing together possibilities
I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.
It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.
Considering other realms
I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.
I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.
Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart
ChatGPT
Reasoned about exoplanet civilization likelihoodを28 秒行う
Evaluating planetary prospects
OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.
Identifying potential candidates
I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.
Identifying promising exoplanets
I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.
I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.
Charting probabilities
I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.
I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.
Refining odds
I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.
I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.
Crafting a chart
I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.
Integrating speculative analysis
I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.
I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.
Piecing together speculative odds
I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.
Piecing together
I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.
Assessing civilization probabilities
I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.
Below is a very speculative chart that—based on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!
Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets
Exoplanet Estimated Likelihood of a Civilized Society
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
How Did We (Very Roughly) Guess These Numbers?
Earth’s Example:
On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.
Proxima Centauri b:
This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).
These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.
LHS 1140 b:
This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.
All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.
Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation's value
OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.
Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.
Understanding the Drake Equation
I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.
The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:
The equation is usually written as:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The average rate of star formation per year in our galaxy.
𝑓
𝑝
f
p
: The fraction of those stars that have planetary systems.
𝑛
𝑒
n
e
: The average number of planets that could potentially support life per star with planets.
𝑓
𝑙
f
l
: The fraction of those planets where life actually develops.
𝑓
𝑖
f
i
: The fraction of planets with life where intelligent life evolves.
𝑓
𝑐
f
c
: The fraction of civilizations that develop technology that releases detectable signals into space.
𝐿
L: The length of time such civilizations release detectable signals.
Why the Drake Equation Is More of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction of stars with planets), have become better known through modern astronomy.
The parameters related to the development of life and intelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of Possible Values:
Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for
𝑁
N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.
The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.
Is the Drake Equation Accurate or More Opinion-Based?
Accurate?
In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.
Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.
The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.
In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation
ChatGPT
Reasoned about non-human intelligence and the Drake Equationを19 秒行う
Evaluating non-human intelligence
I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.
Piecing together possibilities
I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.
It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.
Considering other realms
I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.
I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.
こういう疑問こそ、生成AIに回答を作ってもらうのが良いと思うよ。
Perplexity PROに聞いてみたよ。
「大学の入学定員のアファーマティブアクションとして女子枠が設定されているのは日本だけですか?海外で女子枠が一般的にある国を列挙してください。特にEU諸国での考え方が気になっています」
大学入学定員における女子枠の設定は、日本に限らず世界の多くの国で実施されています。ただし、その形態や規模は国によって異なります。以下に、女子枠が比較的一般的な国々を列挙し、特にEU諸国の状況について説明します。
1. インド
2. パキスタン
3. バングラデシュ
4. マレーシア
5. 韓国
EUでは、高等教育における性別による直接的な割当制(クオータ制)は一般的ではありません。しかし、ジェンダー平等を促進するための様々な取り組みが行われています[1][6]。
1. 法的枠組み:EUの基本条約では、男女平等の促進が重要な価値として位置づけられています[28]。
2. ポジティブ・アクション:EUは、形式的な平等だけでなく、実質的な平等の実現を目指しています。これには、一時的な特別措置(ポジティブ・アクション)の実施も含まれます[6][31]。
3. 分野別アプローチ:特に理工系(STEM分野)における女性の参画を促進するための取り組みが行われています[28]。
1. ソフトロー:法的拘束力のない指針や勧告を通じて、ジェンダー平等を推進しています[11]。
2. 財政的支援:女性の参画を促進するためのプログラムに資金を提供しています[11]。
3. データ収集と分析:European Institute for Gender Equalityなどの機関を通じて、ジェンダー平等の進捗状況を継続的に監視しています[28]。
4. 企業の取締役会におけるクオータ制:一部のEU加盟国(フランス、ドイツ、イタリアなど)では、上場企業の取締役会における女性比率の目標を設定しています[10]。
日本の大学入試における「女子枠」の設定は、EUの一般的なアプローチとは異なります。日本の取り組みは、特定の分野(主に理工系)における女性の参画を直接的に促進することを目的としています[15][18]。
一方、EUでは、教育システム全体を通じてジェンダー平等を促進する包括的なアプローチを採用しています。これには、早期教育からのステレオタイプの排除、キャリア指導の改善、ロールモデルの提示などが含まれます[28]。
結論として、大学入学定員における明示的な「女子枠」の設定は、日本を含むアジアの一部の国々でより一般的であり、EUでは直接的なクオータ制よりも、包括的かつ長期的なアプローチが採用されていると言えます。
[1] spaceshipearth.jp/affirmative-action/
[2] univ-journal.jp/column/2024249156/
[3] feminist.org/news/european-court-of-justice-strikes-down-affirmative-action-law/
[4] mainichi.jp/univ/articles/20240925/ddm/010/100/018000c
[5] note.com/yourchoice_ycp/n/n644ad1296281
[6] www.jil.go.jp/institute/zassi/backnumber/2014/07/pdf/060-069.pdf
[7] eur-lex.europa.eu/legal-content/EN/TXT/?uri=legissum%3Ac10935
[8] jbpress.ismedia.jp/articles/-/80117
[9] www.kaonavi.jp/dictionary/affirmative-action/
[10] ja.wikipedia.org/wiki/%E3%82%A2%E3%83%95%E3%82%A1%E3%83%BC%E3%83%9E%E3%83%86%E3%82%A3%E3%83%96%E3%83%BB%E3%82%A2%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3
[11] ehne.fr/en/encyclopedia/themes/gender-and-europe/gender-citizenship-in-europe/european-union-gender-equality-policies-1957
[12] www.keinet.ne.jp/teacher/media/guideline/backnumber/23/0203/shiten3.pdf
[13] www.gender.go.jp/kaigi/kento/positive/siryo/pdf/po02-2.pdf
[14] revistaidees.cat/en/la-unio-europea-a-lavantguarda-de-les-politiques-digualtat/?pdf=12310
[15] www.yomiuri.co.jp/kyoiku/kyoiku/daigakunyushi/20240308-OYT1T50053/
[16] waseda.repo.nii.ac.jp/record/10032/files/Honbun-7017.pdf
[17] www.nytimes.com/1997/11/12/world/european-union-court-upholds-affirmative-action-for-women.html
[18] www.nikkei.com/article/DGXZQOCD17DER0X10C24A7000000/
[19] journals.sagepub.com/doi/10.1177/00016993231163416?icid=int.sj-abstract.citing-articles.34
[20] news.tv-asahi.co.jp/news_society/articles/000341947.html
[21] www.eigo-net.jp/easy_readings/easy_readings-3403
[22] note.com/wakari_te/n/n8e298c2e524c
[23] eic.obunsha.co.jp/file/exam_info/2024/1108.pdf
[25] www.gender.go.jp/policy/positive_act/pdf/positive_action_011.pdf
[26] www.gender.go.jp/research/kenkyu/ishiki/kekka53.html
[27] corp.miidas.jp/assessment/10794/
[28] commission.europa.eu/document/download/965ed6c9-3983-4299-8581-046bf0735702_en
[29] mainichi.jp/articles/20240426/k00/00m/040/090000c
[30] www.hosei.ac.jp/diversity/publication/newsletter/vol3-1/?auth=9abbb458a78210eb174f4bdd385bcf54
[31] www.era-comm.eu/oldoku/SNLLaw/04_Positive_action/116DV06_Selanec_EN.pdf
[32] admissions.titech.ac.jp/admissions/admission/admission/international
アメリカの大学における女子枠の状況は、日本とは大きく異なります。
アメリカでは、1972年の平等機会法(Equal Opportunities Act)以降、人種間の不平等是正を目的としたアファーマティブ・アクションが実施されてきました[4]。しかし、近年では性別に基づく優遇措置に対して批判が高まっています。
1. 法的問題:性別に基づく入学枠の設定は、教育改正法第9編(タイトル・ナイン)に違反する可能性があるとして、多くの苦情が申し立てられています[3]。
2. 男性への不利益:現在の大学では、むしろ男性が不利な状況にあるという主張があります[3]。
3. 違憲判断:2023年6月、最高裁判所がハーバード大学とノースカロライナ大学のアファーマティブ・アクションを違憲と判断しました[5]。
多くの大学が、性別に基づく優遇措置を廃止する動きを見せています:
アメリカの大学、特にトップスクールでは、男女比がほぼ半々になっています。例えば、スタンフォード大学のコンピュータサイエンス専攻では、3人に1人が女子学生です[2]。
このように、アメリカでは明示的な「女子枠」ではなく、長期的かつ包括的なアプローチによってジェンダーバランスの改善を図ってきた結果、現在の状況に至っています。
[1] note.com/wakari_te/n/n8e298c2e524c
[3] forbesjapan.com/articles/detail/47454
[4] ipdi.w3.kanazawa-u.ac.jp/cdl/houkoku/doc/090317ppt.pdf
[5] x.com/LazyWorkz/status/1816616538717454751
[6] www.jstage.jst.go.jp/article/kyoiku/89/4/89_683/_pdf/-char/ja
https://m.youtube.com/watch?v=9DBBqK1XmdU
Beautiful city. Instantly notice how thin everyone is and how clean the streets are. Looks like what London, Paris and Berlin used to be before globalism got them
美しい街だ。みんな痩せていて、通りもきれいなのが一目で分かる。グローバリズムに呑まれる前のロンドン、パリ、ベルリンみたいだ。
Import the third world, become the third world. Keep out the third world.
第三世界を呼び入れたら、第三世界になる。第三世界を締め出そう。
Budapest, Vienna, Bratislava, Warsaw, Prague belgrade etc have this old world vibe about it that I love. It`s beautiful with out being pretentious.
ブダペストやウィーン、ブラチスラヴァ、ワルシャワ、プラハやベルグラードなんかは昔ながらの世界って雰囲気があって好きだ。大袈裟じゃなく、美しいよ。
beautiful, kind, smart, pure, strong country. some day i want go there
美しく、親切で、賢く、純粋で、強い国だ。
いつか行きたい。
Truly European ❤️
本当にヨーロッパらしい❤️
ーーー
ヒエ〜〜ッwwwww
わりとこんな感じのコメントが多くて、それがいいねを集めてもいる。