はてなキーワード: ソリトンとは
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義, 直観主義, ユニバース問題, ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定, 二次剰余)
解析数論(ゼータ/ L-関数, 素数定理, サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, several complex variables)
関数解析
バナッハ/ヒルベルト空間, スペクトル理論, C*代数, von Neumann代数
フーリエ解析, Littlewood–Paley理論, 擬微分作用素
確率解析
マルチンゲール, 伊藤積分, SDE, ギルサノフ, 反射原理
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流, ヤン–ミルズ, モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin), カオス, シンボリック力学
点集合位相, ホモトピー・ホモロジー, 基本群, スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory, 幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色, マッチング, マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン, ブーストラップ)
実験計画/サーベイ, 因果推論(IV, PS, DiD, SCM)
時系列(ARIMA, 状態空間, Kalman/粒子フィルタ)
二次計画, 円錐計画(SOCP, SDP), 双対性, KKT
非凸最適化
離散最適化
整数計画, ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
常微分方程式の数値解法(Runge–Kutta, 構造保存)
エントロピー, 符号化(誤り訂正, LDPC, Polar), レート歪み
公開鍵(RSA, 楕円曲線, LWE/格子), 証明可能安全性, MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
無裁定, 確率ボラ, リスク測度, 最適ヘッジ, 高頻度データ
データ解析
数学や物理を大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。
地球儀を切り開いて、平面にしようとしても、2次元の世界地図はできません。
という定理。
3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子のリーマンが、「じゃあ、4次元から3次元とか、もっと高次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論(空間が曲がる)の記述へと繋がる。
2位 論理回路
信号機とかのプログラムを電気回路で表現するにはどうすればいいのか?ということの理論。
4ビットの信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計が必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単に電気回路を設計することができる。
物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。
なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動や位置が後」という理論。
4位 再起構文
再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。
いまだに原理を理解できていないけど、結果的にそうなってる。不思議すぎる。
なんと、光の半分くらいまでしか画像を読み取ることができない。
光以外にも、エコー(超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。
だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい
6位 5次以上の方程式の解の公式(代数的な表現の)はない。(ガロア理論)
これは証明をぜひ追ってみて欲しい。
実際に、これらの手法が提案されたときは数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。
量子力学とかも物理の不安定な理解が、数学的にどう不安定なのかが納得できる。
30代のオッサンなんだけど、
いわゆる、大学院入試レベルの数学やら物理やらというのは、マアマアできる。
いわゆる、イプシロンデルタだの、一様収束だの、解析力学だの、熱力学だの。
そういうのは、一応理解できる。そのレベルまでは、割とサックリ行って、3か月くらいだった。
関数解析、多様体、リー代数。物理で言えば、シュレディンガー方程式、ソリトン。こういうやつらだ。
1900年前後の物理と数学、このあたりで一気にレベルが上がる。アインシュタインあたりね。ネーター定理とかの保存量とかが出てくるあたりがヤバイ。ポアソンカッコがヤバイ。数学と物理が抽象度を上げて一気に交じりだす。
1960年前後の数学となると、そっから更に難易度が上がる。レーザーとかが出来たせい(レーザーの光は量子力学の理屈からできた)で、実験系と理論系が相互に影響あたえあってるのがあるらしい(ちなみに、大抵の場合、実験系が圧勝らしい)。
実験系の話も、ギリギリ分かる程度だけど、理論系は鬼のように難しい。
ヤバイだろ。現代の人たちってどのレベルにいるんだろ。数学は流石にそんなにゴリゴリ進まないと思うけど(数学の年表みると、数年間隔は保っている)。理論物理はヤバそう。なんたって、実験系の物理のレベルがいまだに毎年レベルが上がり続けている。レンズとか光(レーザーの改善とか)とかがレベルアップし続けているから、新しい観測がドンドン生まれている(ノーベル物理学賞は光系の実験系やMRI系の波動への授与がかなり多い)。
いわゆる数学で食っている人も、「数学は小説と違うから、1日1ページでも理解できたらいい」とかそういう感じらしい。
どんだけ頭よくても、「記述の意味が分からない」時というのはあるらしい。
こんな事あるのかな。かなりビックリしている。
悔しい。
ムービーは小島さんが学生時代からずっとやりたかったことのオマケだと俺は思ってるんだけども、
なんであんなにも3の信者が多いのかね?
シナリオ神!とか言ってる人が多いけど要するに「ザ・ボスが己を殺してでも国に尽くしました」ってだけじゃん。
いやたしかに大変だったろうなとは思うけど物語的にはありがちな話じゃん。
で、(俺にとって)肝心のアクションゲーとしての話になると、
・主観覗きこみをしてもバレない(2だと見つかる)
・主観のままタクティカルリロードができる(RPGだろうが連射しまくり)
・ローリングの当たり判定がものすごく広い(ていうか、広すぎ)
・難易度が低いと見つかっても隠れずに逃げまくってると自動回復量が敵からのダメージより多いのでなんとかなっちゃう
・PS2パッドのボタンの数が足りなかったのか、操作が難しい(強押し・弱押しなどの使い分けなど)
・増援兵が弱い(2や1の方が圧倒的に見つかった場合死ねる)
・見つかっても狭いとこで待ち伏せしてCQC無双で簡単に全滅
って感じで、どうもあまり好かないのよ。
いやたしかにマップは広くなったからルート選択などの自由度はかなり増えたけどさ。
その代わり「敵兵が目の前の角まできてるのをビハインドマップでたしかめながらドキドキする」
そのために敵兵の位置を暗記せざるをえなくなった感もしないではない。
2は2で
・説教くさい
・「右腕がぁ!」とかアホか
・もっとスネークでやらせろよ
などといった批判があるのは分かるんだけども、
3より個人的には上だと思うんだよなぁ。