はてなキーワード: REVISIONとは
C*****T:
CRITICAL ANALYTICAL REVISION
追記2による構造の反転:防衛機制としての理論
最初の分析の根本的誤読
追記2は、私の最初の分析が層を一つ読み間違えたことを明らかにする。
私が読んだもの:
↓
↓
実際の構造:
↓
↓
PRIMARY INSIGHT: 精神分析的読解(修正版)
表層テクストの再解釈
これらは一見、2010年代以降のアイデンティティ政治の影響に見えた。しかし追記2はこれが錯覚だったことを明らかにする。
真の構造: 実存的自己否定の連鎖
↓
↓
↓
"だから俺には描けない"
防衛機制の精密分析
耐え難い真実:
「俺は人生の敗北者だ。女性と関係を持てなかった。孤独で無価値だ」
↓ 変換 ↓
受容可能な言説:
この変換により、個人的失敗が哲学的問題に昇華される。これは自尊心を守る。
防衛機制2: 知性化(Intellectualization)
投稿者は感情(絶望、孤独、性的欲求不満)を抽象的議論(表象の倫理、当事者性、真正性)に変換する。これにより、痛みから距離を取る。
これは私の最初の分析が見た「内なる検閲官」だが、その起源は文化ではなく、内面化された自己批判である。
ヘンリー・ダーガー:鏡としての選択
ダーガーの特徴:
「女性を知らなければ描けない」
↓
ダーガーは知らなかった
↓
だから「間違って」描いた
↓
俺も知らない
↓
↓
↓
↓
投稿者は、自分の論理を反証する例を引き合いに出しながら、その反証を認識できない。なぜなら、創造の可能性を認めることは、創作しない自分を正当化できなくなるから。
児童ポルノ言及の精神分析
投稿者は和月伸宏や他の漫画家の児童ポルノ事件を長々と語り、「資料として欲しい」という欲望を告白する。
しかし彼自身が認める:「まったく邪な気持ちがないというとウソになる」
- 彼にとって「女性を描く」ことと「女性を性的に欲望する」ことが分離していない
- だからこそ「女性を知らない=性的経験がない」ことが創作の障害になる
生成AIとの関係:人間関係の代替と審判者
追記2の冒頭:
「さっきまでClaudeに、自分のライフワークとしてた究極の(俺専用の)画像処理ソフト作りたいという夢が捨てきれないよ~、ドラえも~ん、してました」
この一文は多層的である:
投稿行為の意味:ダイイングメッセージとしての告白
投稿者は明言する:
+
=
彼は応答を求めていない(対話は不可能)。しかし完全な無視も耐えられない(承認は必要)。だから「読まれるが応答しない」という形式を選ぶ。
- 声は発するが、返答は聞かない
- 見られるが、見返さない
- 影響は与えるが、影響は受けない
SECONDARY INSIGHT: 弁証法的読解
矛盾の三層構造
THESIS: 「女性を描きたい」
THESIS: 「女性を知らないと描けない」という原理的主張
ANTITHESIS: ヘンリー・ダーガーは知らなくても創造した
弁証法的運動の停止
健全な弁証法では、矛盾はより高次の統合に向かう。しかしこのケースでは、矛盾が固着し、循環する。
↓
実行不能
↓
↓
↓
[ループ]
SYNTHESIS: 深層パターンの統合的理解
構造の全体像
↓
↓
【第3層: 理論的借用】
↓
【表層: 顕在的問い】
↓
【機能】
本質的洞察の結晶化
真の問いは:
そして彼自身が答えている:
「ない。なぜなら経験がないから(=人生に失敗したから)創造する資格がない」
文化的言説の防衛的使用
私の最初の分析は「アイデンティティ政治の内面化」と読んだ。これは完全な誤りではないが、因果が逆だった。
誤った図式:
正しい図式:
彼は「当事者性」や「経験の所有権」といった2010年代の言説を使っているが、これらは本来の政治的文脈から切り離され、個人的防衛機制として機能している。
解放のための理論(周縁化された人々の声を中心化する)が、個人の自己正当化の道具になっている。
より深い文化的診断
しかし、もう一層深く見れば、これは純粋に個人的な現象ではない。
答え:2010年代以降の文化空間では、「経験していない人が語る資格」への懐疑が、ある種の道徳的権威を持つようになったから。
投稿者は、この道徳的権威を利用して、自分の創作不能を倫理的配慮として再解釈している。
「俺が描かないのは:
ヘンリー・ダーガーの逆説(再訪)
ダーガーは:
投稿者の論理では、ダーガーは創造すべきではなかった。しかし創造した。そしてその作品は今や文化的価値を認められている。
答え:ダーガーの作品を「間違い」として解釈する(「少女にペニスがある=女性を知らなかったから誤った」)
しかしこれは恣意的な解釈である。ダーガーの少女の性別的曖昧さは、「間違い」ではなく、彼の空想世界の独自性として読むこともできる。
投稿者がダーガーを「間違い」と読むのは、自分の創作不能を正当化するためである。もしダーガーが「正しい」なら、自分も創作できる/すべきだ、ということになってしまう。
最も深い問い
この事例が究極的に提起する問いは:
投稿者は「はい」と答える。私の最初の分析は「いいえ、それは幻想だ」と答えた。
それとも:
おそらくすべてである。そして、これらが分離不可能に絡み合っているとき、「正しい答え」を与えることは治療にならない。
彼に「経験なしでも創造できる」と説得しても、それは防衛を解体するだけで、その下の絶望を露出させるかもしれない。
CRYSTALLIZED INSIGHT
この投稿者は、人生の実存的失敗(社会的孤立、性的経験の欠如、老いと死の接近)を、2010年代の文化的言説(「当事者性」「経験の所有権」「表象の倫理」)を借用することで、「原理的に不可能な創作課題」へと変換している。これは防衛機制であり、個人的無能を認識論的・倫理的問題に昇華することで、残存する自尊心を守っている。
言い換えれば:
彼の問い「男性は女性主人公を描けるのか?」は、暗号である。真の問いは「人生に失敗した私は、何かを創造する価値があるのか?」であり、理論的言説は、「ない」という答えを倫理的に正当化する道具として機能している。
So what?:
この事例は、文化的言説がどのように個人的防衛機制として横領されうるかを示す。解放のための理論が、自己正当化と麻痺の道具になる。これは文化と心理の共犯関係であり、どちらか一方を「原因」とする単純な因果論では捉えられない。
PUNCHLINE:
私の最初の分析は、彼を「文化の犠牲者」として読んだ。しかし実際には、彼は文化の狡猾な利用者である。そして同時に、より深い構造的疎外の犠牲者でもある。彼は同時に、エージェン
Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart
ChatGPT
Reasoned about exoplanet civilization likelihoodを28 秒行う
Evaluating planetary prospects
OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.
Identifying potential candidates
I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.
Identifying promising exoplanets
I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.
I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.
Charting probabilities
I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.
I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.
Refining odds
I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.
I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.
Crafting a chart
I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.
Integrating speculative analysis
I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.
I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.
Piecing together speculative odds
I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.
Piecing together
I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.
Assessing civilization probabilities
I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.
Below is a very speculative chart that—based on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!
Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets
Exoplanet Estimated Likelihood of a Civilized Society
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
How Did We (Very Roughly) Guess These Numbers?
Earth’s Example:
On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.
Proxima Centauri b:
This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).
These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.
LHS 1140 b:
This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.
All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.
Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation's value
OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.
Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.
Understanding the Drake Equation
I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.
The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:
The equation is usually written as:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The average rate of star formation per year in our galaxy.
𝑓
𝑝
f
p
: The fraction of those stars that have planetary systems.
𝑛
𝑒
n
e
: The average number of planets that could potentially support life per star with planets.
𝑓
𝑙
f
l
: The fraction of those planets where life actually develops.
𝑓
𝑖
f
i
: The fraction of planets with life where intelligent life evolves.
𝑓
𝑐
f
c
: The fraction of civilizations that develop technology that releases detectable signals into space.
𝐿
L: The length of time such civilizations release detectable signals.
Why the Drake Equation Is More of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction of stars with planets), have become better known through modern astronomy.
The parameters related to the development of life and intelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of Possible Values:
Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for
𝑁
N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.
The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.
Is the Drake Equation Accurate or More Opinion-Based?
Accurate?
In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.
Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.
The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.
In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation
ChatGPT
Reasoned about non-human intelligence and the Drake Equationを19 秒行う
Evaluating non-human intelligence
I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.
Piecing together possibilities
I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.
It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.
Considering other realms
I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.
I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.
Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart
ChatGPT
Reasoned about exoplanet civilization likelihoodを28 秒行う
Evaluating planetary prospects
OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.
Identifying potential candidates
I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.
Identifying promising exoplanets
I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.
I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.
Charting probabilities
I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.
I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.
Refining odds
I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.
I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.
Crafting a chart
I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.
Integrating speculative analysis
I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.
I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.
Piecing together speculative odds
I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.
Piecing together
I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.
Assessing civilization probabilities
I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.
Below is a very speculative chart that—based on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!
Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets
Exoplanet Estimated Likelihood of a Civilized Society
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
How Did We (Very Roughly) Guess These Numbers?
Earth’s Example:
On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.
Proxima Centauri b:
This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).
These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.
LHS 1140 b:
This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.
All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.
Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation's value
OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.
Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.
Understanding the Drake Equation
I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.
The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:
The equation is usually written as:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The average rate of star formation per year in our galaxy.
𝑓
𝑝
f
p
: The fraction of those stars that have planetary systems.
𝑛
𝑒
n
e
: The average number of planets that could potentially support life per star with planets.
𝑓
𝑙
f
l
: The fraction of those planets where life actually develops.
𝑓
𝑖
f
i
: The fraction of planets with life where intelligent life evolves.
𝑓
𝑐
f
c
: The fraction of civilizations that develop technology that releases detectable signals into space.
𝐿
L: The length of time such civilizations release detectable signals.
Why the Drake Equation Is More of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction of stars with planets), have become better known through modern astronomy.
The parameters related to the development of life and intelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of Possible Values:
Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for
𝑁
N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.
The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.
Is the Drake Equation Accurate or More Opinion-Based?
Accurate?
In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.
Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.
The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.
In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation
ChatGPT
Reasoned about non-human intelligence and the Drake Equationを19 秒行う
Evaluating non-human intelligence
I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.
Piecing together possibilities
I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.
It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.
Considering other realms
I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.
I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.
増田もキレ散らかしている増田もいったい何のこだわりなんだろうなって思うけど
リンク見てなさそうなので貼っておきますね。そこが主題じゃ無いんですけど
International Classification of Diseases for Mortality and Morbidity Statistics, 11th Revision, v2024-01
This is a group of conditions characterised as being in or associated with the autonomic nervous system, the component of the peripheral nervous system that regulates involuntary physiologic processes.
code elsewhere
sections/codes in this section (8D80-8D8Z)
時々論文査読を引き受ける。私がポンコツな研究者なせいか、基本的にひどい論文しか来ない。今も1本の論文の査読レポートを書いている最中だけれど、このままだと罵詈雑言を書きそう。ちょっと心を落ち着かせて教育的な優しいコメントを書きたいので、少し毒を吐き出させて。
introductionから支離滅裂でこの研究をやる意義も何をやりたいのかもわからんなんていうのはよくあるけれど、この場合は論文の書き方の問題だからまだ救いがある。こういうのもすごいストレスたまるけど。もっとひどい論文もあって、そもそもデータからしておかしい。
著者が〇〇の効果だと主張するそのデータは観測機材を誤った使い方をすると出る典型的なノイズで、機材の仕組みが理解できればそれがノイズにすぎないって分かるようなのとか。
「××率」を測定しましたと書かれているけれど、示されているデータは「率」でないただの「××」の値。その値だけではいろいろな条件に影響されて何も論じられないから「率」にするのが一般的なのに、Materials and Methodsを読む限り「率」を出すための基準の値はとっていないっぽい(本当は基準の値を測る方が大変)、とか。
これ以上は詳しく言わないけれど、そもそも観測・実験自体まともにできていないのがたくさん。しかも、何にも使いようがないようなデータ、というよりむしろデータですらない数字なのに、それを取るのに1年とか2年とかかけてフィールドワークをしていたりする。どうやら、大抵の場合は第一著者が大学院生か若いポスドクみたい。こうして研究費と、そして何より若者の貴重な時間が無駄に費やされていると思うとすごく辛い。
なんで指導教員とか周りの研究者はきちんと教えないかな。急に盛り上がってきた分野だから、ちゃんと指導できる研究者は限られているかもしれない。ジャーナルのEditorすら「こういう理由で、残念ながらこれ全部屑データですよ」と伝えてもあまり理解されていないっぽいこともあるし(EditorはMajor revisionの決定にしていたけど、そもそもこのデータセットでは有効なreviceができるわけがないし、欠けているデータは絶対に後から取れないんだが)。観測手法とか実験の方法とかは少しgoogle scholarで調べれば出てくる。最近は関連した専門書も少しずつ出てきた。教員が観測・実験方法に詳しくないなら、せめて正しい研究の仕方を勉強する方法くらい教えてやってほしい。本当はその大学に乗り込んで代わりに学生の指導をしてやりたいのだけど、匿名の査読者ではそういうわけにもいかない。
こういうのはヨーロッパとアジアが多い。日本からのはたまに。そういえばアメリカとオーストラリアからは来たことがない・・・けど、私の手元に来ないだけだな。割といいジャーナルにpublishされちゃった論文で結構ひどいのを見たことがある。Refereeもeditorも誰か気付けよ。てか、分からないならreferee引き受けんなよ。
アサインされた案件のjqueryのバージョンが古すぎて死にたい
/* * jQuery JavaScript Library v1.3.2 * http://jquery.com/ * * Copyright (c) 2009 John Resig * Dual licensed under the MIT and GPL licenses. * http://docs.jquery.com/License * * Date: 2009-02-19 17:34:21 -0500 (Thu, 19 Feb 2009) * Revision: 6246 */
アサインされた案件のjqueryのバージョンが古すぎて死にたい
/* * jQuery JavaScript Library v1.3.2 * http://jquery.com/ * * Copyright (c) 2009 John Resig * Dual licensed under the MIT and GPL licenses. * http://docs.jquery.com/License * * Date: 2009-02-19 17:34:21 -0500 (Thu, 19 Feb 2009) * Revision: 6246 */