はてなキーワード: ラグランジアンとは
僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。
朝の儀式はいつも通り分解可能な位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。
コーヒーを注ぐ手順は一種の群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。
友人二人とは夜に議論を交わした。彼らはいつも通り凡庸な経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的に有意な部分だけを抽出する。
昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉で再構成した。
第一に、空間−時間背景を古典的なマンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。
局所的な場作用素の代数は、従来の演算子代数(特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。
これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー的同値(homotopical equivalence)として扱われる。
さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。
要するに、弦空間の局所構造はモチーフ的ホモトピー理論のファイバーとして復元できるかもしれない、という直感だ。
これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である。
ただしここから先はかなり実験的で、既知の定理で保証されるものではない。
こうした再定式化は、物理的予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。
議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論的エントロピーの一側面を説明するのではないかと仮定したが、それは現時点では推論の枝の一本に過ぎない。
専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。
僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。
日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンのキーボード配列、ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。
隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相的補正である。
服を着替える順序は群作用に対応し、順序逆転は精神的な不快感を生じさせる。
ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。
友人の一人は夜の研究会で新しいデッキ構築の確率的最適化について話していたが、僕はその確率遷移行列をスペクトル分解し、期待値と分散を明確に分離して提示した。
僕はふだんから、あらゆる趣味的活動をマルコフ過程や情報理論の枠組みで再解釈してしまう悪癖がある。
昨夜は対戦型カードのルールとインタラクションについても議論になった。
カード対戦におけるターンの構成や勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップ/アンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップが定義されている)。
僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。
実際の公式文書での定義を参照すると、タップとアンタップの基本的な説明やターンの段階が明らかにされている。
同様に、カード型対戦の別の主要系統では、プレイヤーのセットアップやドロー、行動の制約、そして賞品カードやノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。
僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。
また、連載グラフィック作品について話題が及んだ。出版社の公式リリースや週次の刊行カレンダーを見れば、新刊や重要な事件がどう配置されているかは明確だ。
たとえば最近の週次リリース情報には新シリーズや重要な続刊が含まれていて、それらは物語のトーンやマーケティングの構造を読み解く手掛かりになる。
僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用のネットワークを解析して、有意なプロットポイントを予測する手法を示した。
夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具的言語遊びではないかと嘲笑したが、僕はそれを否定した。
抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。
実際、位相的・圏論的表現は具体的計算を単に圧縮するだけでなく、異なる物理問題や戦略問題の間に自然な対応(functorial correspondence)を見出すための鍵を与える。
昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定のゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。
これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。
僕の関心は常に形式と実装の橋渡しにある。日常の儀式は形式の実験場であり、超弦理論の再定式化は理論の検算台だ。
隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。
午後には彼らとまた表面的には雑談をするだろうが、心の中ではいつものように位相写像と圏論的随伴関手の組を反芻しているに違いない。
完璧な月曜日の朝は、僕の胃腸の健康に最適化された、厳選されたシリアルと低温殺菌乳の組み合わせから始まる。
これは僕が毎週月曜日に正確に測定して実行している、科学的に証明された習慣だ。
この厳密なルーティンは、腸内微生物叢の最適なバランスを維持し、したがって、僕の認知機能を最高レベルに保つための、絶対的に不可欠な基盤となっている。
このプロセスを妨げる、僕のルームメイトがキッチンに入ってきた。彼は、僕の緻密な計算に基づいた生活計画において、制御不能な確率的変数だ。
その後、僕の研究室へと向かった。
今日の僕の課題は、タイプIIB超弦理論における、非可換幾何学を用いたDブレーンのダイナミクスを、特に非摂動的な領域で精査することだ。
具体的な目標は、NS5-ブレーンと交差するD3-ブレーンの世界面上の、開弦と閉弦の相互作用によって生成されるホログラフィックなS行列を計算することにある。
これは、AdS/CFT対応の枠組みの中で、特定の超対称ゲージ理論の相図における、非自明な質量ギャップの存在を解明するための、極めて重要なステップだ。
僕はこの一日、6次元スーパーコンフォーマル場理論のコンパクト化における、例外的なゲージ群F4の特異点解消を試み、エキゾチックなCalabi-Yau多様体の内部に存在する、隠された超対称性の破れを探求した。
この研究は、単純な4次元時空という概念を完全に超越した、究極の統一理論を構築するための、僕の生涯をかけた探求の核心だ。
この研究の複雑さは、僕の友人たちが毎週楽しんでいる、低俗な娯楽とは全く次元が違う。
彼らは、今日の新作コミックのプロット、例えば、DCコミックスにおけるバットマンの多元宇宙バージョンがどのようにしてプライムアースに収束するか、といった、僕にとっては子供だましの議論に興じているだろう。
夜になり、僕の友人の部屋を訪れた。
今日の議論のテーマは、最新のテレビゲーム『サイバーパンク2077』における、リフレクションとレイトレーシング技術の実装についてだった。
僕は、そのゲームの視覚的な美麗さが、物理エンジンの根本的な欠陥、特にラグランジアン力学に基づいたオブジェクトの運動法則の不正確さによって、いかに無意味なものになっているかを指摘した。
具体的には、光速に近い速度で移動するオブジェクトの慣性モーメントの描写が、ローレンツ変換を考慮していないという事実が、そのゲームを物理学的に信用できないものにしている。
その後、僕の隣人が、僕の友人とその友人と共に、僕の視覚フィールドに入ってきた。
彼女の存在は、僕の計画された孤独な夜の時間を妨げる可能性があったため、僕は速やかに僕の部屋へと退却した。
夕食を終えた後、僕は僕の部屋で、僕の心を満たす唯一のメディア、すなわち、物理法則に完全に準拠したSFテレビ番組を鑑賞した。
本日の作業は、p-adic弦理論における散乱振幅の構造を再確認し、通常の弦理論(Archimedeanな場合)との対比を整理すること。特に、Veneziano振幅のp-adic版がどのように形式化され、さらにAdelicな統一の枠組みの中で役割を果たすのかを見直す。
通常の弦理論における4点Veneziano振幅は次式で表される(実数体上)
A_∞(s, t) = ∫₀¹ x^(s−1) (1−x)^(t−1) dx = Γ(s) Γ(t) / Γ(s+t)
ここで s, t は Mandelstam 変数。
一方、p-adic版では積分領域・測度が p進解析に置き換えられる。
A_p(s, t) = ∫_{ℚ_p} |x|_p^(s−1) |1−x|_p^(t−1) dx
この結果として、p進弦の振幅はベータ関数のp進類似物として定義される。計算すると、次のように局所ゼータ関数的な形になる。
A_p(s, t) = (1 − p^(−1)) / ((1 − p^(−s))(1 − p^(−t))(1 − p^(−u)))
ただし
u = −s − t
重要なのは、Archimedeanおよびp-adicな振幅がAdelicな整合性を持つこと。
A_∞(s, t) × ∏_p A_p(s, t) = 1
という積公式が成立する(Freund & Witten, 1987)。
これはリーマンゼータ関数のEuler積展開と同型の構造を持ち、数論的側面と弦理論的散乱の間に直接的な接点があることを示す。
p-adic string theoryは「異常な」場として扱われるが、通常の弦理論の有効場の補完的な側面を提供している。
局所場の集合を全て集めた「Adelic統一」によって、物理的振幅が数論的整合性を持つことは、弦理論が単なる連続体モデルではなく「数論幾何的構造」に根ざしている可能性を強く示唆する。
p-adic tachyonの有効作用(非局所ラグランジアン)は、通常の弦理論の非局所場のモデルと形式的に対応しており、近年の非局所的宇宙論モデルやtachyon condensationの研究とも接続可能。
具体的に、p-adic string field theory における非局所作用
S = (1/g²) ∫ dᴰx [ −(1/2) φ · p^(−□/2) φ + (1/(p+1)) φ^(p+1) ]
の安定解を調べる。特に、tachyon vacuum の構造をArchimedeanな場合と比較する。
AdS/CFT対応のp-adic版(Bruhat–Tits木を境界とする幾何)の最新文献を精査する。
1. Bruhat–Tits木を用いたp-adic AdS/CFTの基本計算を整理。
2. tachyon有効作用の安定点を数値的に探索(簡単なPython実装でテスト)。
3. Adelicな視点から「物理的に実在するのはArchimedean世界だが、背後にp進世界が潜在している」という仮説をどう具体化できるか検討する。
p-adic string theoryは長らく「数学的 curiosum」と見なされてきたが、AdS/CFTのp-adicバージョンや非局所場理論としての応用が現代的文脈を与えている。
端的に言えば、ある物理理論におけるAブレーンが作る世界の構造(圏)と、その双対理論におけるBブレーンが作る世界の構造(圏)が一致するという物理的な要請が、数学上の「幾何学的ラングランズ対応」という予想そのものを導き出す、という驚くべき対応関係が存在する。
AブレーンとBブレーンは、超弦理論において「D-ブレーン」と呼ばれる時空に広がる膜のようなオブジェクトの特殊なもの。
これらはホモロジカルミラー対称性という予想の文脈で役割を果たす。
シンプレクティック幾何学における「ラグランジアン部分多様体」に対応。これは、時空の「位置」に関する情報を主に捉える対象。
Aブレーン全体の集まりは、「深谷圏 (Fukaya category)」と呼ばれる数学的な圏を構成。
代数幾何学における「正則部分多様体」や「連接層」に対応。これは、時空の「複素構造」やその上の場の状態に関する情報を捉える対象。
Bブレーン全体の集まりは、「連接層の導来圏 (derived category of coherent sheaves)」と呼ばれる圏を構成。
ある空間(カラビ・ヤウ多様体 X)のAブレーンが作る世界(深谷圏)が、それとは見た目が全く異なる「ミラー」な空間 Y のBブレーンが作る世界(導来圏)と、数学的に完全に等価(同値)である、という予想。
ラングランズプログラムは、現代数学で最も重要な予想の一つで、「数論」と「表現論(解析学)」という二つの大きな分野の間に、深い対応関係があることを主張。
1. 数論側: 曲線 C 上の「G-局所系」の圏。ここで G はリー群。これはガロア表現の幾何学的な類似物と見なせる。
2. 表現論側: 曲線 C 上の「ᴸG-D-加群」の圏。ここで ᴸG は G のラングランズ双対群。これは保型形式の幾何学的な類似物。
つまり、C上のG-局所系の圏 ≅ C上のᴸG-D-加群の圏 というのが、幾何学的ラングランズ対応。
この一見無関係な二つの世界を結びつけたのが、物理学者アントン・カプスティンとエドワード・ウィッテンの研究。
彼らは、N=4 超対称ゲージ理論という物理理論を用いることで、幾何学的ラングランズ対応が物理現象として自然に現れることを示した。
彼らが考えたのは、リーマン面(代数曲線)C 上のゲージ理論。
これは、ゲージ群が G で結合定数が g の理論と、ゲージ群がラングランズ双対群 ᴸG で結合定数が 1/g の理論が、物理的に全く同じ現象を記述するというもの。
このゲージ理論には、「ループ演算子」と呼ばれる重要な物理量が存在し、それらがブレーンに対応。
S-双対性は、G 理論と ᴸG 理論が物理的に等価であることを保証。
したがって、一方の理論の物理的な対象は、もう一方の理論の何らかの物理的な対象に対応しなければならない。
カプスティンとウィッテンが示したのは、このS-双対性によって、G 理論の A-ブレーン ( 't Hooft ループ) の世界と、その双対である ᴸG 理論の B-ブレーン(Hecke固有層) の世界が、入れ替わるということ。
物理的に等価である以上、この二つの圏は数学的にも同値でなければならない。そして、この圏の同値性こそが、数学者が予想していた幾何学的ラングランズ対応そのものだった。
このようにして、弦理論の幾何学的な概念であるAブレーンとBブレーンは、ゲージ理論のS-双対性を媒介として、純粋数論の金字塔であるラングランズプログラムと深く結びつけられた。
ドナルドソン理論は、反自己双対ヤン=ミルズ方程式(ASDYM方程式)のモジュライ空間を用いて、4次元多様体を扱う理論。方程式には、4次元多様体上のコンパクトなゲージ群 G を持つ主束が必要。
手法はドナルドソンにちなんで名付けられたもので、最初に1983年(単連結な G を仮定)および1987年(その仮定なし)に用いられ、ドナルドソンの定理の証明に使われた。
その後、ドナルドソン理論はセイバーグ=ウィッテン理論によって発展的に置き換えられた。ドナルドソン不変量はセイバーグ=ウィッテン不変量と比べてしばしば弱い結果しか与えず、モジュライ空間に対して追加のコンパクト化を必要とすることも多いため。それでも、ウィッテン予想やアティヤ=フルーア予想を含む、ドナルドソン理論における未解決問題は存在している。
ドナルドソン理論の位相的FQFT(有限次元量子場理論)形式は、シンプレクティック多様体とそれらの間のラグランジアン対応からなる適切なシンプレクティック圏からの関手として定式化されると考えられている。この関手は、シンプレクティック多様体をそのフカヤ圏へと対応させる。
位相的弦理論とラングランズプログラムは、ゲージ理論と双対性を介した関係性が存在する。
N=4 超対称ヤン・ミルズ (SYM) 理論とS-双対性がある。
カプースチンとウィッテンによって示されたように、この4次元ゲージ理論を特定の方法でツイストし、次元を落とすことで、2次元の理論として幾何学的ラングランズ対応が現れる。
1. N=4 SYM 理論: この理論は、最大の超対称性を持つゲージ理論であり、結合定数 g に対して、g ↦ 1/g という変換(S-双対性)の下で自己双対的であると考えられている。これは、強結合領域と弱結合領域を結びつける性質。
2. ツイストと次元削減: この理論をリーマン面 C と実2次元平面 R² の積空間 C × R² 上で考え、R² 方向の対称性を保つようにツイスト。これにより、C 上の2次元的な理論が得られる。
3. 幾何学的ラングランズ対応の出現: このツイストされた2次元理論を量子化する方法は、ゲージ群 G を選ぶか、そのラングランズ双対群 ᴸG を選ぶかによって異なる。S-双対性は、これら二つの異なる記述(G による記述と ᴸG による記述)が物理的に等価であることを示唆。この物理的な等価性が、数学的には幾何学的ラングランズ対応(リーマン面上の G-束のモジュライ空間におけるある種の層の圏と、ᴸG-局所系のモジュライ空間における別の層の圏の間の等価性)として現れる。
位相的弦理論は、この描像にミラー対称性という別の双対性をもたらす。位相的弦理論には、主に二つのモデルがある。
カプースチン-ウィッテンの描像では、N=4 SYM 理論から導かれる幾何学的ラングランズ対応は、B-モデルの特定の状況と強く結びついている。
一方、ミラー対称性は、このB-モデルの描像をA-モデルの描像に翻訳する。これにより、幾何学的ラングランズ対応を、A-モデルの言語、すなわちシンプレクティック幾何学や深谷圏の言葉で理解することができる。
統合失調症の病態を理解する新たな理論的枠組みとして、神経回路レベルの情報処理における「最小作用の原理」からの逸脱が異常体験を引き起こすという仮説を提唱する[1][2][3]。
この理論は、従来のドーパミン仮説や神経回路異常説を統合し、自由エネルギー原理とベイズ推論の破綻を量子力学的アナロジーで説明する。
前頭葉-辺縁系のドーパミン伝達異常が神経回路の同期性を乱すことで、脳内の「作用積分」最小化プロセスが阻害され、確率的経路探索が活性化される。
その結果、通常は抑制される量子力学的な重ね合わせ状態が認知プロセスに顕在化し、幻覚・妄想などの陽性症状が発現するメカニズムを提案する。
神経回路の情報処理を特徴づける自由エネルギー原理は、ベイズ推論による予測誤差最小化の過程を定式化したものと解釈できる[3]。
この理論的枠組みにおいて、脳は外界の生成モデルを内在化し、感覚入力との予測誤差を最小化するように神経活動を最適化する。
この過程を物理系の「作用積分」最小化と数学的に等価なプロセスとして再解釈する。
神経回路の時々刻々の活動パターンは、ラグランジアン関数で定義される作用積分の極小値を探索する経路として記述可能である[3]。
従来のドーパミン仮説では、中脳辺縁系のD2受容体過活動が陽性症状の原因とされてきた[1]。
この理論的拡張として、ドーパミンシグナルが作用積分の地形形成に寄与する要因と位置づける。
具体的には、ドーパミンが神経回路の接続重み(シナプス強度)を調整することで、作用積分の局所的最小値の分布を変化させる。
統合失調症ではこの調節機能が破綻し、最適経路から外れた異常な作用極小値へのトラップが生じると考える[2][3]。
理研のモデルマウス研究で示された海馬の場所細胞異常[2]は、空間認知における作用積分最小化の失敗例と解釈できる。
通常、迷路探索時の神経活動は経路積分の最適化過程を反映するが、カルシニューリン変異マウスでは過剰な神経発火が作用地形の乱れを引き起こす。
この現象を、量子力学における経路積分の確率的広がりと数学的に類似した過程としてモデル化する。
前頭葉ドーパミン伝達の低下が皮質下系の過活動を引き起こすという修正ドーパミン仮説[1]を、作用積分の多極化現象として再解釈する。
ドーパミン濃度の地域差が神経回路の「温度パラメータ」として機能し、確率的経路選択の度合いを調整すると仮定する。
統合失調症患者ではこのパラメータが異常値を示し、確率的重み付けが狂うことで通常は無視される高エネルギー経路が選択されやすくなる[3]。
通常の認知処理では、多数の可能な神経活動経路のうち作用積分が最小となる古典的経路が支配的である。
しかし統合失調症では、神経回路のノイズ特性変化やドーパミン調節異常により、経路積分の確率分布が歪む。
この状態をシュレーディンガー方程式の非調和振動子モデルで記述し、固有状態の重ね合わせが異常知覚として体験されると考える。
観測問題を神経活動のマクロな収束過程と対応づける。通常、意識的注意が神経活動の波動関数を特定の状態に収束させるが、統合失調症ではこの収束プロセスが不安定化する。
特にデフォルトモードネットワークの過活動[2]が、内在的な観測者機能を阻害し、重ね合わせ状態の持続を許容すると仮定する。
マルチエレクトロード記録と光遺伝学を組み合わせ、迷路課題中の海馬神経集団の活動経路を作用積分で定量化する[2]。
統合失調症モデル動物で経路積分の分散が増大することを予測し、抗精神病薬投与によりこの分散が収束するかを検証する。
神経細胞集団間の同期性を量子もつれのアナロジーで測定する新規指標を提案する。
fMRIと脳磁図(MEG)を組み合わせ、デフォルトモードネットワーク内のコヒーレンス持続時間を計測することで、異常な量子状態の持続性を評価する[2][3]。
経頭蓋磁気刺激(TMS)を用いて特定神経回路の作用積分地形を改変する。前頭前皮質への高周波刺激により、異常な局所最小値から脱出するエネルギー障壁を低下させる[1][3]。
ドーパミン受容体部分作動薬により神経回路の「温度パラメータ」を調整し、確率的経路選択の重み付けを正常化する。
特にD1/D2受容体のバランス調節が、作用積分の地形平滑化に寄与すると予測する[1][3]。
本理論は、統合失調症の病態を神経回路レベルの情報最適化プロセスの破綻として再解釈し、異常体験の発生機序を説明する。
自由エネルギー原理と作用積分最小化の数学的等価性[3]、海馬の経路符号化異常[2]、ドーパミン調節障害[1]を統合する新パラダイムを提示した。
今後の課題は、量子神経科学的手法による理論の実証と、作用地形を標的とした新規治療法の開発である。
これにより、精神疾患の理解が物理学的原理に基づく統一理論へと発展する可能性が開かれる。
Citations:
究極理論がわからない現状、もし仮に「我々の世界が不安定な真空にいる」ことを仮定すれば
相応のエネルギーを加えて真の真空に落とす(相転移させる)ことで物理法則が変更されるという
人為的ネオエクスデス「うちゅうの ほうそくが みだれる!」 ができますね。
イメージ的には過冷却です。すでに相転移が起きているのに気がつかないで元の真空にとどまっています。ちょっと突くと一瞬で凍ります。
現に、新しい加速器が作られる度になんかスゲェ無理矢理な模型を作って「加速器のせいで世界が滅びる!」系の論文がarXivに投稿されたりします。意外と増田と同じことを考える人がいるんですね。ただしこれらの論文は一瞬で否定されます。なぜならば、加速器で作るビームなんかよりも中性子星ガンマ線バーストのほうがよほど強いからです。宇宙強い。人類の技術は弱い。驕るなよ人類。
前から不思議だったけど、これらの法則って経験から導き出されたものであって、その法則がどうやって存在してるかは不明なんだよな
以下、意味は取らなくて良いので流れと単語だけ拾ってください:
たとえばエネルギーの保存は時間方向の並進対称性、運動量保存則は空間方向の並進対称性から、角運動保存則は回転対称性から導き出されるといえるでしょう。
(相対論的には時間と空間は同時に取り扱うのですがちょっと難しくなるので簡易な書き方をしています)
時空の対称性が決まる → ラグランジアンが決まる → オイラーラグランジュの方程式(運動方程式)
ここまでよんだ?
なら次は、ランダウ・リフシッツ「力学」の最初の20ページくらい読んでください。
前提知識は微積分です。ここまで読めば上の文章はだいたい理解できるかと思います。
そして次にあなたはこう思うでしょう
「最小作用の原理っていったいなんなんだ? 世界はなぜこんな原理に従う?」
そう思ったなら次は量子力学です。JJサクライ「現代の量子力学」の経路積分のページまで読み進めましょう。
ここまでくれば霧が晴れるように見通せるようになるはずです。
物理理論とは何であるかが把握できるかと思います。ここから先はご自由に。
なお、JJサクライは物理科ではちょっと ’進んだ’ 内容とされています。普通は2冊目に読む本ですね。が、ハテナーにとってはむしろ読みやすい本かと思います。だってどうせ君ら情報系でしょ?なんかプログラムとか書ける人たちでしょ??なら、ブラケット表記の方が慣れていると思うんですよ。たぶん見ればわかるよ。
数学や物理を大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。
地球儀を切り開いて、平面にしようとしても、2次元の世界地図はできません。
という定理。
3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子のリーマンが、「じゃあ、4次元から3次元とか、もっと高次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論(空間が曲がる)の記述へと繋がる。
2位 論理回路
信号機とかのプログラムを電気回路で表現するにはどうすればいいのか?ということの理論。
4ビットの信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計が必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単に電気回路を設計することができる。
物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。
なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動や位置が後」という理論。
4位 再起構文
再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。
いまだに原理を理解できていないけど、結果的にそうなってる。不思議すぎる。
なんと、光の半分くらいまでしか画像を読み取ることができない。
光以外にも、エコー(超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。
だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい
6位 5次以上の方程式の解の公式(代数的な表現の)はない。(ガロア理論)
これは証明をぜひ追ってみて欲しい。
実際に、これらの手法が提案されたときは数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。
量子力学とかも物理の不安定な理解が、数学的にどう不安定なのかが納得できる。
これは 物理学 Advent Calendar 2014 の記事です。
僕は blog を持っていないので はてな匿名ダイアリー をお借りします。
しばらく話すうちにおじさんが知りたいのは『ヒッグス粒子そのもの』ではなく
『なぜ研究者はヒッグス粒子発見に大騒ぎしたのか?』なのではないかと気が付きました。
研究者がヒッグス発見に大騒ぎした理由はあまり説明されてなかった気がします。(僕が見逃しただけかもしれません)
なのでちょっと書いてみようというのがこの記事です。今更な話ですみません。
床屋での世間話的ないいかげんな話です。あまり中身はありません。
普段はてなを見ている人なら全部知っている内容かもしれません。あまり期待しないで読んでください。
(あと間違いがあったらすみません)
これから物理の基礎理論が大発展する(かもしれない)からです。
場の理論を聞いたことはあるでしょうか? 量子力学を 相対論+多粒子系 に拡張したものです。
古典力学は量子力学の、量子力学は場の理論の、近似的な理論といえます。
Ruby が C言語で記述されているように、量子力学は(原理的には)場の理論で記述できるべきものです。
C言語が正しくて Ruby が「間違っている」という訳ではないように
場の理論が正しくて量子力学が「間違っている」訳ではありません。ただ、適用できる範囲が違うのです。
さて、量子力学や場の理論がプログラム言語だとしたら、コードは何でしょうか?
実は「ラグランジアン」と呼ばれているものがそれに相当します。
ややこしいのですが「ラグランジアン」も理論と呼ばれています。
素粒子理論の研究者が「理論を作る/改良する」と言ったら、それは大体ラグランジアンの改良を指しています。 (注[1])
素粒子理論の研究者は、世界のあらゆるものを記述できるラグランジアンをつくろうとしています。
[これ]が場の理論で書かれたラグランジアン、標準理論と呼ばれているものです。(ごめんね。良い画像が見つからなかった。)
僕たちの世界で現在わかっている ”ほとんど” 全てを説明することができます。
世界の全てを記述するコードがこんなにシンプルなんて結構びっくりでしょう? そんなことない?
ちなみに一番下の項がヒッグスです。
これまで研究者達は理論の予想と実験結果の違いをヒントに理論を修正してきました。
ところが困った事が起こりました。
実験結果と全部合うなら標準理論が完璧な理論なのか? ・・というとそうではありません。
多くの研究者が現在の標準理論はまだ不完全であると考えています。
まず重力がうまく扱えません。それどころか様々な理由から場の理論そのものが、より基礎的な理論の有効理論(近似的な理論)ではないかと今では考えられています。
理論は不完全なことが分かっているのに、修正するヒントがなくなってしまったという訳です。
そんなわけで標準理論はここ40年ほどあまり変わっていません。
こんな中、標準理論で唯一まだ発見されていないのがヒッグス粒子だったのです。
ヒッグス粒子が発見されてその質量が決まるだけでも大きなヒントになるというわけです。
それはようやく標準理論のバグ取りが可能になるから。実に40年ぶりに。
つまりヒッグス粒子は研究者にとって最後の希望とかそういう・・いや、最後でもないか。
まだLHCに発見してほしいものはいろいろあります。(超対称性粒子とか・・。)
[1] 場の理論や量子力学の修正ではなく、ラグランジアンの修正です。
皆さんも自分のつくったプログラムにバグがあったら C言語のバグではなく、まずは自分の書いたコードのバグを疑いますよね? つまりそういうことです。
物理学 Advent Calendar 2014 を立ち上げ管理してくださった id:tanaka733 さん、 id:aetos382 さんに感謝致します。
皆さんの記事を楽しませていただきました。飛び入り参加ですみません。
お目汚しすみませんでした。
メリークリスマス。良い夢を。
id:allthereiznika わかりやすかった。出来れば参考ページ・書籍も示してくれるともっと良かった。
一般向けの解説書は僕はよく知らないのですが
こんなのが出るみたいですね。目次を読む限り良さそうです。
Chapter2 が標準理論の破れの話ですが、どうも最近の話題が入っているようなのでちょっと差し引いて読んでください。
Chapter3 が標準理論の改良の話(超対称性理論etc) 。 それから上でちょっとでてきましたが、
「場の理論」自体がより基本的な理論の有効理論であると思われています。(より基本的な言語・・アセンブリ言語とでも例えるべきでしょうか?)