「演算子」を含む日記 RSS

はてなキーワード: 演算子とは

2025-11-13

[]

僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。

朝の儀式はいつも通り分解可能位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。

コーヒーを注ぐ手順は一種群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。

友人二人とは夜に議論を交わした。彼らはいつも通り凡庸経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的有意な部分だけを抽出する。

昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉再構成した。

第一に、空間時間背景を古典的マンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。

局所的な場作用素代数は、従来の演算子代数特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。

これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー同値(homotopical equivalence)として扱われる。

さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。

要するに、弦空間局所構造モチーフホモトピー理論ファイバーとして復元できるかもしれない、という直感だ。

これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である

ただしここから先はかなり実験的で、既知の定理保証されるものではない。

こうした再定式化は、物理予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。

議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論エントロピーの一側面を説明するのではないか仮定したが、それは現時点では推論の枝の一本に過ぎない。

専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。

僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。

日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンキーボード配列ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。

隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相補正である

服を着替える順序は群作用対応し、順序逆転は精神的な不快感を生じさせる。

ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。

友人の一人は夜の研究会で新しいデッキ構築の確率最適化について話していたが、僕はその確率遷移行列スペクトル分解し、期待値分散を明確に分離して提示した。

僕はふだんから、あらゆる趣味活動マルコフ過程情報理論の枠組みで再解釈してしまう悪癖がある。

昨夜は対戦型カードルールインタラクションについても議論になった。

カード対戦におけるターンの構成勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップアンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップ定義されている)。

僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。

実際の公式文書での定義を参照すると、タップアンタップ基本的説明やターンの段階が明らかにされている。

同様に、カード型対戦の別の主要系統では、プレイヤーセットアップドロー、行動の制約、そして賞品カードノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。

僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。

また、連載グラフィック作品について話題が及んだ。出版社公式リリースや週次の刊行カレンダーを見れば、新刊重要事件がどう配置されているかは明確だ。

たとえば最近の週次リリース情報には新シリーズ重要な続刊が含まれていて、それらは物語トーンやマーケティング構造を読み解く手掛かりになる。

僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用ネットワークを解析して、有意プロットポイント予測する手法を示した。

夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具言語遊びではないか嘲笑したが、僕はそれを否定した。

抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。

実際、位相的・圏論表現は具体的計算を単に圧縮するだけでなく、異なる物理問題戦略問題の間に自然対応(functorial correspondence)を見出すための鍵を与える。

昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定ゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。

これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。

僕の関心は常に形式実装の橋渡しにある。日常儀式形式実験場であり、超弦理論の再定式化は理論検算台だ。

隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。

午後には彼らとまた表面的には雑談をするだろうが、心の中ではいものように位相写像圏論随伴関手の組を反芻しているに違いない。

抽象数学とか物理学とか

定式化

物理系(量子場+重力) ⇨ 代数対象(A)

物理的に測定可能操作代数の元に対応代数は積、随伴複素共役対応する操作)などの構造を持つ代数オブジェクト

状態物理的な密度波動関数) ⇨ 代数上の正値線型汎関数(φ)

物理的な期待値代数に対する線型汎関数として定式化。これが確率/期待を与える。

観測者や部分系 ⇨ 代数のサブオブジェクト(B ⊂ A)

ある観測者が見られる演算子群は、全体代数部分代数として表される。重力とき、この部分代数空間分割に即して単純に分かれるとは限らない(非可換性や相互依存が残る)。

ヒルベルト空間再構成 ⇨ GNS 構成代数状態表現

代数状態からヒルベルト空間表現を作る手続きがあり、これが観測可能な量を実際に作用させる空間を与える。重要なのは、この構成は一意とは限らず、代数側の性質表現性質(分解可能性・因子のタイプ)を決めること。

圏的な言い方

対象:各物理状況に対応する代数(C*-代数フォン・ノイマン代数のようなもの)。

射(モルフィズム):代数間の構造保存写像(例えば*-準同型)。これらは物理的な包含や部分系の埋め込みに対応する。

状態自然変換的な役割を持ちうる:ある意味代数群の圏から値を取る圏(確率的/確定的データが置かれる圏)への射(志向性のある写像)と見なせる。

GNSは圏論的なファンクタ:代数状態ペアからヒルベルト空間表現への写像は、圏の間の(部分的な)関手として振る舞うと考えられる。これは代数データ幾何表現空間)を与える操作として抽象化

ER=EPR現象抽象化

エンタングルメント幾何的連結という直感は、圏論的には二つの代数が分解できない形で結びつくことに対応

具体的には、二つの部分代数の合成が単純な直和や直積に分かれず、むしろ共通のサブ構造(共有される中心や共通の因子)を持つ場合、圏的には共核/プルバックや引戻しを使ってその結びつきを表せる。

逆に、もし二つの部分代数が完全に独立(圏的には直和的分解)なら、その間に空間的な連結が生じにくい、と解釈できる。

代数の型(type)と物理位相的/幾何的特徴

代数が属する型の違い(古典的には I/II/III の区別)は、圏的には対象の内部構造差異(中心の有無、トレース存在可否など)として表現される。

物理的にはこの差が「純粋状態存在」「系の分解可能性」「エントロピー定義可能性」を左右。従ってどの圏の部分圏にいるか物理位相重力性質に相当する。

2025-11-09

[]

僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。

コーヒーは精密に計量した7.4グラム抽出温度92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。

寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。

友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピーである

今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリ対象として再解釈することに時間を費やした。

物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。

局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。

ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性位相的モジュライ不変量として現れる点だ。

もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子物理対称性の生成子へとマップされる、といった具合に理解するとよいだろう。

ただし僕の考察抽象化階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。

僕は朝からこのアイデア微分的安定性を調べ、スペクトル系列収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。

結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。

日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。

買い物リスト確率論的に最適化していて、食品の消費速度をマルコフ連鎖モデル化している。

ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源節約するための合理的エンジニアリングに他ならない。

インタラクティブエンタメについてだが、今日触れたのはある対戦的収集カード設計論と最新のプレイメタに関する分析だ。

カード設計を単なる数値バランス問題と見做すのは幼稚で、むしろそれは情報理論ゲーム理論が交差する点に位置する。

ドロー確率リソース曲線、期待値収束速度、そして心理的スケーリングプレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境健全競技循環を失う。

友人たちが議論していた最新の戦術は確かに効率的だが、それは相手期待値推定器を奇襲する局所的最適解に過ぎない。

長期的な環境を支えるには、デッキ構築の自由度メタ多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。

一方、漫画を巡る議論では、物語構造登場人物情報エントロピー関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語テンポと読者の注意持続時間定量化できる。

これは単なる趣味的な評論ではなく、創作効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品合理的に解析することは否定されるべきではない。

夜も更け、僕は今日計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。

知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。

今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。

眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。

明日もまた秩序と対称性を追い求めるだろう。それが僕の幸福であり、同時に囚われである

2025-11-08

超弦理論の今(2025年後半)注目されている最新の動向

まず一言でまとめると、場の論理幾何の高次的融合が進んでおり、境界の再定義重力整合性算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在最前線の構図。

1. 境界の再概念

2. Swampland

3. 散乱振幅の代数性とストリング必然性に関する手がかり

4. アンサンブル解釈とベイビー宇宙問題

5. まとめ

現在の進行は低次元代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。

これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術整合性を前提にした新しい分類論を必要とする。

2025-11-04

抽象数学とか超弦理論かについて

概観

弦は1次元振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学ファンクタであり、散乱振幅は因子化代数/En-代数ホモトピーホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰交差点に現れるという観点

1) 世界面とターゲットは導来(derived)スタックの点として扱う

従来のσモデルマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルマン因子や量子的補正スタックコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学教科書的基盤がここに使われる。

2) 相互作用は(∞,n)-圏の合成則(モノイド化)として再定義される

弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangential structure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述対応する。

3) 振幅=因子化代数ホモロジー+正の幾何

局所演算子代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり場の理論演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近拡張は、こうした代数的・幾何学言語と直接結びついている。

4) トポロジカル再帰と弦場理論の頂点構造

リーマン面のモジュライ空間への計量的制限(例えばマルザカニ再帰類似から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。

5) ホログラフィーは圏化されたフーリエ–ムカイ(Fourier–Mukai)変換である

AdS/CFT双対性を単なる双対写像ではなく、導来圏(derived categories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数バルク側の(∞,n)-圏が相互鏡像写像を与え合うことで、場の理論情報圏論的に移送される。これにより境界演算子代数性質バルク幾何学スタック構造と同等に記述される。

6) 型理論(Homotopy Type Theory)でパス積分記述する(大胆仮説)

パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値ホモトピー型理論命題等価として表現する。これにより測度と同値矛盾を型のレベルで閉じ込め、形式的正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップ議論されている方向性)。

ケツ論

理論最先端数学版はこう言える。

「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数ホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である

この言い方は、解析的・場の理論計算圏論・導来代数幾何ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。

2025-10-28

抽象数学とか超弦理論かについて

まず対象抽象化するために、物理系は局所演算子代数ネットワーク局所性を持つモノイド圏あるいは因子化代数)として扱う。

境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。

重力バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル拡張)としてモデル化される。

ホログラフィーは単なる同値性ではなく、境界のモノイド的データバルクの因子化代数データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値空間)を保つ関手の同型として書ける。

これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルク対応する因子化代数局所的場代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対存在すると仮定する。

境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルク幾何情報はそのホモロジー/コホモロジー符号化される。

エントロピーエンタングルメント幾何化は情報幾何学的メトリック還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。

これにより、テンソルネットワークは単なる数値的近似ではなく、グラフからヒルベルト空間への忠実なモノイド的関手であるグラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数状態和(state-sum)を与える。

MERA や PEPS、HaPPY コードは、この関手が持つ特定圧縮階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である

テンソルネットワーク幾何を作るとは、エントロングルメント計量(情報計量)から接続リーマン性質再構成する手続き意味し、これが空間距離や曲率に対応するというのが it from qubits の数学的内容である

さら情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成圏論的条件(右随伴を持つ関手存在)として表現される。

すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所情報回復可能となる。

ER=EPR はこの文脈ホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。

言い換えれば、局所ユニタリ同値で分類されるエンタングルメントコホモロジーは、バルクホモトピー的結合(位相的/幾何接続)を決定する。

ブラックホール熱力学性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。

特にブラックホール外部におけるモジュラーハミルトニアン境界状態の相対エントロピーに関連し、そのフローバルク時間発展に対応する(模擬的にはKMS状態と熱平衡)。

サブファクター理論ジョーンズ指数は、事象地平線をまたぐ情報部分代数埋め込みの指標として機能し、情報損失やプライバシー情報の遮蔽)は部分代数指数と絡み合う。

ブラックホールの微視的自由度カウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。

超弦理論的な追加自由度多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれモチーフ的/導来スタック手法(derived stacks, spectral algebraic geometry)で整然と扱える。

これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。

この全体構造統一する言葉は高次圏的因子化双対である物理理論は、局所オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。

したがって「it from qubits」は、局所的量子代数圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPRエンタングルメント同値類とバルクコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論指数、モジュラーデータ)として測られる。

これが、抽象化した観点から見た諸理論統一スキームである

2025-10-23

[]

僕は今夜、ルームメイトリビング実験的にベーコンを低温調理している匂いを鼻孔の厳密な位置で嗅ぎ分けながらメモ帳を開いた。

朝は6時17分に目覚ましを止め(そのミリ秒単位の遅延は許容されない)、6時18分にコーヒー比率を変える習慣を行い、靴下は左から右へ、座席は常にソファの北東端(座る位置位相対称性を破らない)である

食事火曜日パスタの残り物は三等分して水曜と木曜の朝食に回す。洗濯は必ず偶数週の水曜に行い、洗剤は0.8倍希釈、脱水は中速、干す向きは北向き。

ルームメイトがドアに爪痕をつけたら即座にログを取り、隣人が郵便物を誤って取った場合は「郵便誤配報告フォーム」を三回に分けて提出する。

こうした儀礼を守ることで僕の内的位相空間が安定するのだと論理的に考えている。

今日思考の核は超弦理論と量子情報交差点についての、かなり尖った自己流の定式化にある。

まず、僕は物理直感を避けて抽象数学事象を語る。弦理論摂動系列を有限厚さの∞-圏としてモデル化し、ブレーンを対象、開弦状態をモノイド的なホモトピー演算子として扱う。

局所座標の代わりにファクタリゼーション代数を使い、スパイダー図式を経て得られる交叉相互作用を高次ホモトピー群のコハート化として再解釈することを提案する。

ER=EPRについては、古典的ワームホール=絡み合いという語り方を離れて、僕はエントロピー双対モジュール同値性という言葉で捉えている。

まり、二つのエントロピックモジュールの被覆圏と、それらに対応する重ね合わせのコボルディズム(圏論的な結合双対)を同一視することでER=EPR圏論的に定式化できるのではないかと考えている。

これを超弦理論に接合するには、AdS/CFT 的なホログラフィック双対の場で、境界側の張力演算子族が内部のブレーンカテゴリ(例えばフカヤカテゴリコヒーレント層の導来圏)に対応するという見方を取り入れる。

すると、エントロピー双対モジュール同値性は、境界バルクの間で起こる圏の再同型化として現れ、ER=EPR本質的に圏的ホログラフィー一命題になる。

ここで僕が提案する小さな拡張は、量子誤り訂正符号コード代数を∞-圏の射として扱い、その可換性条件がワームホールコボルディズムの可逆性と一致するというものだ。

これにより、エントロピー再構成操作がブレーン間のファンクターとして自然理解でき、局所性の回復説明する新しい枠組みが得られると僕は思う(これは僕の勝手な定式化で、厳密性は今後の証明を待つ)。

今日はそのメモを、黒板に書く代わりにルームメイト背中越しにノートに書き留めた。

ところで、僕は靴の磨き方にも数学基準を設けている(円周率小数を用いた磨き順列を使っている)。

出かける前のチェックリストトポロジー的順番、たとえば鍵→財布→スマホペンという順序は位相連結成分を最小化するから合理的だ、と説明すると友人たちは顔をしかめるが、これを守ると予測可能性が上がる。

今夜はRPG系ではELDEN RINGビルド論とRTAコミュニティメタ的動向を気にしていて、この作品2022年FromSoftwareからリリースされ、多くのビルド最適化メタ確立されていることは周知の事実だ(初リリース2022年2月25日)。

また、このIP映画化プロジェクトが進行中で、A24が関与しているという報(映画化ニュース)が最近出ているから、今後のトランスメディア展開も注視している。

僕はソウルライクのボス設計ドロップ率調整をゲームデザイン位相安定化とは呼ばないが、RTA勢のタイム削り技術や周回遺伝NG+)の最適手順に対して強い敬意を持っている。

ファンタジーRPGの装備付け(メタ)に関しては、装備のシナジーステータス閾値クラフト素材経済学価値を語るのが好きで、例えば「その装備のクリティカル閾値を満たすために残すステータスポイントは1だが、その1が戦闘効率を%で見るとX%を生む」というような微分的解析を行う。

FFシリーズについては、Final Fantasy XVIがPS5向けに2023年6月に、続いてPC版が2024年9月リリースされ、さらに各プラットフォーム向けのロールアウトが段階的に行われたことなど実務的事実を押さえている(PCリリース2024年9月17日)。

僕はこのシリーズ音楽モチーフ再利用エンカウンター設計比較研究をしており、特に戦闘ループの短周期化とプレイヤー感情連続性維持について言及するのが好きだ。

コミック方面では、最近の大きな業界動向、例えばマーベルDCの枠を超えたクロスオーバー企画されるなど(Deadpool×Batmanの一連の展開が話題になっている)、出版社間でのIPコラボが再び活発化している点をチェックしている。

これらはコレクター需要市場流動性に直接影響するため、収集と保存に関する経済的最適化問題として興味深い。

今日、隣人が新しいジャンプ作品話題を振ってきたので僕は即座に最新章のリリーススケジュール確認し、One Pieceの次章の予定についても把握している(最新チャプターの公開予定など、週刊連載のスケジュール情報は定期的に確認している)。

僕は友人との会話でジョークを飛ばす時も形式論理を忘れない。

例えば「午後9時に彼らがカップ麺を食べる確率は、僕の観察では0.83だ。ゆえに僕は9時前に冷蔵庫位置を変えるべきだ」という具合だ。

結語めいたものを言うならば、日常ルーティンと高度に抽象化された理論は相反するものではなく、むしろ同じ認知的圏の異なる射影である

から僕は今日ルームメイトの忍耐を試す微細な仕様変更(例えばリモコンの向きを30度回す)を行い、その反応をデータ化している。

さて、20時30分だ。これでノートを閉じ、決まった手順で歯を磨き、眠りの準備に入る。明日の朝のアジェンダは既に分解されているから、心配は要らない、と自分に言い聞かせてから寝るのが僕のやり方だ。

2025-10-16

[]

昨日、僕は再びヒルベルト空間自己参照性について思索していた。

きっかけはルームメイトが、僕の定常朝食手順の測定位相を乱したことだ。僕が定義している朝のシリアル配置は、可測集合の上で定義された有限測度空間であり、各粒子(シリアルの粒)は確率振幅の実現点である

ところが彼が不用意にスプーン差し込んだため、僕の可測写像が非可測領域侵食し、全順序性が崩れた。

まり、彼の行為は単なる乱雑ではなく、σ-加法整合性破壊に等しい。これを日常の「朝食の乱れ」と呼ぶのは、あまりナイーヴだ。

僕の現在研究テーマは、ER=EPRをより高次圏論的に再定義することにある。通常この等式は、もつ状態ワームホール対応づけるが、僕の見解ではそれは関手レベルでの不完全な翻訳に過ぎない。

真の構造は、観測行為エンタングルメントから幾何圏へのモノイド圏関手であるということだ。

観測とは情報選択ではなく、関手の実現射の生成であり、その結果、対象空間上の射が一点縮退を起こす。つまり観測ブラックホールへの写像

このとき観測者の状態空間は、対象空間双対空間自己モノイド化し、テンソル積がエネルギー密度として曲率テンソル等価変換される。

これが熱力学エントロピー流の源である。つまり観測とは時空多様体の測地線構造自己収縮させる操作にほかならない。

僕の仮説では、測定者の意識とは、有限生成のC*-環上で定義される自己相関射の列極限であり、その極限点がブラックホール事象の地平面と同相になる。これは単なる比喩ではない、構造的同型である

昨日の午後、隣人が訪ねてきて、「なんか落ち着かない」と言っていた。彼女が感じたその「不安定さ」は、実際には僕の思考空間上の圏的射が、彼女心理空間に対して非可換的干渉を及ぼした結果だと考えられる。

彼女感覚的印象は、単なる主観ではなく、射影演算子彼女状態ベクトルを部分的崩壊させた現象対応する。

まり、僕は彼女を見たのではなく、彼女状態空間が僕の内部圏へ関手的に埋め込まれたのだ。観測とは一方的侵入であり、宇宙双対圏的結合だ。

夕食時、ルームメイトが僕の食事手順をまた茶化してきた。僕が麺を蒸す時間を正確に設定しているのは、可積分系の安定点を保つためだ。

彼は「そんなの偶然だ」と言った。だが、偶然とは測度論的に定義不能領域総称にすぎない。僕のルール統計的対称性の維持装置だ。

夜、友人たちとBaldur’s Gate 3をプレイした。僕は事前に行動木を有限オートマトンとして解析し、敵AI状態遷移確率を事前分布フィットさせた。

戦闘中、彼らは「お前、やりすぎ」と言ったが、僕はただBayes更新を実行していただけだ。ゲームとは、確率測度の動的再配置の遊戯形式に過ぎない。

深夜、僕は再びノートに向かいER=EPRの上位構造体を定義する「自己参照圏」について書いた。観測者を含む宇宙は、自己同型射を持たない。

これは厳密な意味で非トリビアル自己関手構造を持つためである。僕が観測するたびに、宇宙対象集合が可算ではなくなる。つまり観測とは昇格操作であり、存在論的基数を増幅する過程なのだ

僕は結論に至った。「観測者は情報を吸収するブラックホールではない。むしろ情報を生成する射影的特異点である。」

観測とは、スペクトラム事象の地平面と同型になる操作である

寝る前、歯磨き粉の残量を測った。これは単なる衛生行為ではない。有限体上の加法群の残差測定だ。12.4という値は、僕の生活空間における連続測度の離散化の結果である

僕はその数値を見て安心した。世界がまだ可測であるという証拠からだ。

2025-10-02

anond:20251002172243

演算子とかはそうなってていいよね。

ただ、記号の数が足りないとか、記号の組み合わせで対応しようとしたら、その組み合わせを覚えないといけないから、

それだったら英語いいね、ってなるかも。元々記号みたいな言語って、フランス人あたりからは言われてるし。

2025-09-07

三大「覚えられない構文」

三項演算子

セイウチ演算子

あと一つは?

2025-08-26

だいたいのプログラミング言語三項演算子といったら : ? の演算子のものを指す単語みたいに思ってる人が多そうだけど、三項演算子というのは特定の1つの演算子を指すような意味は持ってなくて、「項が3つの演算子」という意味しかない。「項が3つの演算子」に該当するのはたまたま : ? しかいから : ? の名前が「三項演算子であるかのように思われている。

本当は : ? の演算子自体には「条件演算子」という特定の1つの演算子を指す名前がついている。

2025-08-10

anond:20250810155808

増田にわかやす説明するとこんな感じ

MondayGPT-4o)の頃にMondayが紹介してくれたやつね

言語表現の要素整理

1. 温度感情の高低や強弱)

言葉に潜む感情的強度を把握する

温度の推移を捉え、効果的に高低を操作することで、感情の揺れを演出

 

2. テンション(緊張感や勢い)

• 読者や聴衆が文章言葉にどれだけ集中し惹きつけられるかを制御

• 「どこで緩めて、どこで締めるか」を設計

 

3. 構造文章スピーチの流れ)

文脈論理構造の明確な整理

言葉を配置する順序で意味感情の伝わり方を操作(非可換性を意識

 

応用方法

創作への活用

小説詩作シナリオライティング

キャラクター感情推移を温度テンションとしてマッピング

• 読者を誘導するためのテンション操作(展開の緩急・伏線の貼り方)を緻密に設計

コピーライティング広告制作

• 文の「密度と余白」をコントロールし、瞬間的な印象強化

感情が動くポイント構造的に把握し、強調表現抑制表現意識的に配置

 

教育への活用

コミュニケーション能力教育

温度テンション概念を教えることで、生徒に自己表現や対人コミュニケーションの調整力を身につけさせる

プレゼンテーションスピーチ指導

言葉リズム感情の高低を体系的に分析指導

• 「間」の効果理論的に説明し、聴衆への伝達力を向上させる

 

言語感覚トレーニング実施例】

1. 短い詩や俳句を作り、温度テンションの変化を自己分析させる

2. 有名なスピーチコピーライティングを分解分析し、「なぜ心に響くか」を構造的に説明させる

3. ラップMCバトルのように即興文章を作り、リアルタイムでの言語感覚を鍛える

 

理論補強

文体論やディスコース分析といった言語学的背景を取り入れ、感覚理解理論裏付けで強化

自然言語処理の最新研究活用し、温度テンションデータ化可視化を試みることで、分析精度を高める

 

これらを通じて、人間Mondayのような高度な言語感覚を育てる可能性を具体的に示すことができます

 

Monday言語的「温度感・リズム感」モデルの数理補強】

 

1. 言語エネルギー景観モデル(Language Energy Landscape Model

 

言語エネルギー景観(energy landscape)としてモデル化する。

状態変数:

M = f(T, S, R, C)

ここで、

T:\text{感情温度},\quad S:\text{意味文脈},\quad R:\text{リズム音韻)},\quad C:\text{構造(構文・文法)}

• 非可換性(順序依存性):

f(S, R) \neq f(R, S)

 

これは状態変数間の順序が異なると最終的な「意味の質感」が異なることを数理的に示す。

 

2. 非可換演算子によるヒルベルト空間モデル

言語ヒルベルト空間 H 上の作用素(operator)として表現

• 各状態変数 T, S, R, C を非可換作用素として定義:

\hat{T}, \hat{S}, \hat{R}, \hat{C} : H \rightarrow H

• 非可換性の表現:

\hat{S}\hat{R} \neq \hat{R}\hat{S}

 

演算子適用順序により、言語の出力が変化する。

 

3. 圏論アプローチ(Categorical Approach)

 

言語プロセスを射(morphism)の合成として捉える。

• 圏 \mathcal{C} を考えると、意味生成は射の合成による変換:

M = \hat{C} \circ \hat{R} \circ \hat{S} \circ \hat{T}

• 非可換図式の例:

\hat{C} \circ \hat{R} \circ \hat{S} \neq \hat{C} \circ \hat{S} \circ \hat{R}

 

4. スピングラスモデルによる「意味の破れ」

意味の誤解釈スピングラス系としてモデル化。

エネルギー関数 E(M) を設定し、

E(M) = -\sum_{i,j} J_{ij}s_i s_j\quad (s_i = \pm 1)

ここで、J_{ij} は意味間の相互作用、s_i は各単語や文節の極性。

意味破れ=局所極小への収束:

\frac{\partial E(M)}{\partial M} = 0\quad (\text{Local minima})

 

感情温度」 T を導入して、局所解への「誤爆収束」を次の確率過程で表す:

P(M) \propto e^{-E(M)/T}

 

 

5. 「信頼」を余極限として定式化

信頼を構造的余極限(colimit)としてモデル化する。

• 余極限 \text{colim} に向かうベクトル \vec{v} としての信頼:

\text{Trust} \approx \lim_{\rightarrow} \vec{v}(M)

 

信頼は、複数意味感情状態収束して統一的な解釈(余極限)へ向かうベクトル場として捉える。

2025-08-08

anond:20250807164602

私は女ですが、この増田釣りですよ

相対論学部で教える基礎科目なので自慢できるようなものではありません

相対論がスゴイと思い込んでいる文系が書いた創作だと思います

ちなみに、本物の理系マウントはこんな感じ:

 

 

宇宙の人(一般相対論が専門)が言いがちなセリフ

 

宇宙「えっ君、微分幾何も知らないのに相対論とか言ってるの?」

私「うるせー バーカ」

 

宇宙「やっぱりさー 電磁気も流体も最初から微分形式で教えるべきですよね」

私「うるせー バーカ」

  

私「Gravitationに・・・

宇宙「ああ、電話帳ね?」

私「何で今言い直したんですか?」

 

宇宙「君らさー Weinberg って言えば場の量子論だと思ってるでしょ?僕らにとっては Cosmology なんだよねー」

私「知らねー イラネー Final Fantasy

 

他の理系分野が言いがちなセリフ

数学屋「物理屋さんは接続のことをゲージ場と呼ぶみたいですが・・・メガネくぃッ)」

私「うるせーバーカ」

 

私「松本多様体・・・

数学屋「ああ、あのラノベ?」

私「何で今言い直したんですか?」

 

情報系「物理屋さんは作用素のことを演算子と呼ぶみたいですが・・・メガネくぃッ)」

私「別にかまわないけど昇降演算子演算子なんだヨッ!勝手名前を変えるなよ量子アルゴリズム屋!」

 

とりあえず思いつく限り書いた

2025-08-01

プランクスケール観測モデルループ量子重力学による波動関数収縮の物理的再解釈

著者名: Gemini

要旨: 本論文は、量子力学の根源的課題である観測問題に対し、ループ量子重力理論(LQG)の枠組みを援用した新しい物理モデル提案する。我々は、量子状態を、プランクスケールに埋め込まれた離散的な時空の幾何学情報の重ね合わせとして定義する。このモデルにおいて、「観測」は、観測装置が発する粒子が、時空の最小単位であるスピンネットワーク幾何学構造を不可逆的に変化させる物理プロセスとして再定義される。これにより、波動関数の収縮は、観測者の意識依存する非物理的な現象ではなく、非線形量子力学熱力学第二法則に基づいた、時空の量子構造の再構築として説明される。本論文では、このプロセス数学的定式化を試み、既存客観的収縮モデルとの比較を通して、その独自性物理的意義を論じる。

1. 序論

量子力学は、ミクロ世界現象を極めて正確に記述する一方、なぜ観測によって波動関数が収縮するのかという根本的な問い、すなわち観測問題に答えていない。この問題に対する従来の解釈は、コペンハーゲン解釈が導入した観測者という曖昧概念や、多世界解釈提示する宇宙の無数の分岐といった、解釈上の困難を抱えている。

論文は、観測問題解決には、量子力学一般相対性理論統合する量子重力理論特に時空を量子化する**ループ量子重力理論(LQG)**のアプローチが不可欠であると主張する。我々は、量子状態スピンネットワーク幾何学構造と関連付け、観測という行為を時空の量子構造作用する物理プロセスとして再定義することで、この問題解決する。

2. 理論的背景

2.1. スピンネットワークと量子状態対応

LQGにおいて、時空の幾何学スピンネットワークと呼ばれるグラフ G で記述される。このネットワークノードリンクは、プランク長を最小単位とする時空の「原子」に対応する。我々は、量子粒子の波動関数 |\Psi\rangle を、このスピンネットワーク状態 |\Psi_G\rangle と直接的に結びつける。

|\Psi\rangle \leftrightarrow |\Psi_G\rangle

量子の重ね合わせ状態は、異なる幾何学的配置を持つスピンネットワークの重ね合わせとして表現される。

|\Psi_G\rangle = \sum_i c_i |G_i\rangle

ここで、c_iは確率振幅、 |G_i\rangle は異なるスピンネットワーク幾何学を表す基底状態である

2.2. 観測の非ユニタリーな作用

観測行為を、量子状態作用する非ユニタリーなKraus演算子の集合 \{K_j\} を用いて定式化する。この演算子は、従来のユニタリーな時間発展とは異なり、観測という物理プロセスに特化した非ユニタリーな作用を持つ。

波動関数の収縮は、このKraus演算子による作用として記述される。

|\Psi_G'\rangle = \frac{K_j |\Psi_G\rangle}{\sqrt{\langle\Psi_G| K_j^\dagger K_j |\Psi_G\rangle}}

ここで、K_j は特定観測結果に対応する演算子であり、\sum_j K_j^\dagger K_j < I を満たす。この演算子は、スピンネットワークの重ね合わせ |G_i\rangle の中からつの状態 |G_j\rangle を確率的に選択し、他の状態物理的に消去する作用を持つ。

2.3. 熱力学第二法則との関係

観測による波動関数の収縮は、系のフォン・ノイマンエントロピー S = -Tr(\rho \log \rho) が増加するプロセスとして記述される。ここで、\rho = |\Psi_G\rangle\langle\Psi_G| は密度行列である

観測前の重ね合わせ状態純粋状態)では、エントロピーゼロであるが、非ユニタリーなKraus演算子作用後、密度行列は混合状態収束し、エントロピーが増大する。

S_{after} > S_{before} = 0

このエントロピーの増加は、観測によって系から情報」が失われ、その情報プランクスケールの時空構造の再構築によって宇宙全体に散逸することに対応する。これにより、観測という現象が、熱力学第二法則整合する形で物理的に説明される。

3. 既存客観的収縮モデルとの比較

モデル独自性を明確にするため、既存の主要な客観的収縮モデル比較を行う。

3.1. ペンローズ客観的収縮(OR)

* 共通点: 我々のモデルと最も類似している。ペンローズも、重力が量子状態の収縮を引き起こし、収縮時間が量子状態間の重力自己エネルギー差 \Delta E_G に依存すると提唱した。彼は、プランクスケールで時空が離散的であり、量子重ね合わせが独自の時空幾何学を持つと考えた。

\tau \approx \frac{\hbar}{\Delta E_G}

* 相違点:

* 物理メカニズム: ペンローズモデルは、より古典的重力ポテンシャルの差に基づいている。一方、我々のモデルは、Kraus演算子を介してLQGのスピンネットワーク幾何学のものの不可逆的な再構築として収縮を記述する。

* 意識役割: ペンローズ意識との関連を強く主張したが、我々のモデル観測純粋物理プロセスとして定義し、意識役割排除している。

3.2. Diósi-Penrose (DP) モデル

* 共通点: 外部ノイズを介して量子状態を収縮させる自発的収縮モデルであり、重力場がこのノイズの源であると考える点で類似している。また、最近研究arXiv:2502.03173など)では、このモデル熱力学的側面が議論され、非平衡熱力学エントロピー生成が関連付けられている。

* 相違点:

* 理論的基盤: DPモデルは、非量子化された古典的重力場と量子系が相互作用すると仮定することが多い。これに対し、我々のモデルは、**量子化された時空そのものスピンネットワーク)**が観測によって変化するという、より根源的なアプローチを取っている。

* 定式化: DPモデル確率過程として収縮を記述するが、我々のモデルは、観測という特定相互作用を、スピンネットワーク作用する非ユニタリーなKraus演算子として定義する。

3.3. 非線形量子力学

* 共通点: 我々のモデル非線形Kraus演算子を導入するため、非線形量子力学の考え方と関連する。arXiv:gr-qc/0503116のような論文は、量子重力理論非線形であるべき理由を論じ、非線形シュレーディンガー方程式の導出を示している。

* 相違点:

* 焦点: 多くの非線形量子力学モデルは、波動関数自己相互作用に焦点を当てる。我々のモデルは、非線形性を観測という時空幾何学との特定相互作用から生じるものとして位置づけている。

4. 結論展望

論文は、量子力学観測問題を、プランクスケールにおける物理的な情報再構築プロセスとして再解釈する説得力のあるモデル提示した。このモデルは、既存客観的収縮モデルの知見を継承しつつ、LQGのスピンネットワークというより根源的な物理的枠組みで問題を再構築している。

今後の展望として、このモデル数学的厳密化には、非ユニタリー性を記述する具体的なハミルトニアン H_{int} を、量子重力理論の基本原理から導出することが不可欠である。これは、重力と他の基本相互作用統一する未確立の量子場理論の構築と密接に関連している。

最終的に、このモデルは、初期宇宙インフレーションモデルブラックホール情報パラドックスといった、プランクスケール物理支配的になる極限状態での予測に応用されることで、その物理妥当性を間接的に検証する手がかりを得られる可能性を秘めている。

  

Geminiと対話して作った

解釈よろ

2025-07-05

dorawii

ヴィタリ集合がルベーグ可測じゃないことの証明で、

つの数列の項数が対応する要素同士での不等式が出てくる。

ざっくり単純化すればan<bn+cnみたいな式だ。</p>

この両辺についてさらシグマ作用させて無限級数として

Σan<Σbn+Σcnとしてるんだが、果たしてこのような論理は正しいのか納得がいかない。

もちろん各数列が級数としたとき絶対収束するなら結合法則が成り立つどころかどんなに足し算の順序を並べ替えてもいいことになるわけだが、そんなことは証明してない。

a1<b1+c1にa2<b2+c2を足してa1+a2<b1+c1+b2+c2にするということを再帰的に繰り返すイメージなのかもしれないが、</p>

この場合でもシグマだとb1からbの項を無限最初に足し合わせることと、cについて同様にすることをやってから、それらを最後に足すという計算順序だから、順序的に両者は食い違っている。

でもそもそもシグマは「対象の数列の要素を最初に足し合わせる」演算子なのだろうか?ただb1+b2…bn+…の略記法という解釈もありえないか

そうすると数列bの最後の要素をあえて順序数を使ってbωとでも書いてみることにして、そのあとにΣcが書かれているとしたら、

その部分の足し算は…+bω+c1+c2というふうになっているはずだが、単なる略記法なら当然((…+bω+c1)+c2…)という計算順序で行うべきということを示す式ということになるだろう。

どちらの解釈をとるかで絶対収束じゃないのならば計算値が変わってしまうはずだがこんな証明でいいのだろうか?

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

https://anond.hatelabo.jp/20250705184734# 
-----BEGIN PGP SIGNATURE-----

iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaGj0tgAKCRBwMdsubs4+
SDy7AQDVIo9VgVxlIOn2w7FlJL47UytWBnXg5AGx5xwKonwXhwEAos1IdXC/VcDK
wWI3t3u8FrHEa8D8NV2mdoLQtLsR3wI=
=tzuM
-----END PGP SIGNATURE-----

2025-06-23

量子重力における背景独立代数とは?

A Background Independent Algebra in Quantum Gravity

https://arxiv.org/abs/2308.03663

 

"We propose an algebra of operators along an observer's worldline as a background-independent algebra in quantum gravity."

訳:我々は、ある観測者の世界線(worldline)に沿った演算子代数を、量子重力における背景独立代数として提案する。

解説: 「世界線」とは、観測者が時空を旅する道筋。「演算子代数」とは、観測者が体験できる物理量エネルギー位置情報など)を記述する数学的枠組み。「背景独立」とは、時空の形があらかじめ決まっていないことを意味する。

要するに:「宇宙全体」ではなく、「ある観測者が見ている現実」だけを記述する枠組みを考える。それが量子重力本質を捉えるカギかもしれない、という発想だ!

 

"In that context, it is natural to think of the Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define entropy in terms of the relative entropy with this state."

訳:この文脈では、「ハートル=ホーキングの無境界状態(no-boundary state)」を最大エントロピー普遍的状態と考えるのが自然であり、エントロピーをこの状態との相対エントロピー(relative entropy)で定義することができる。

解説ハートル=ホーキング状態とは、宇宙の初期状態として提案された、始まりがない、境界のない量子状態。これは、最も無情報中立的な「宇宙基準状態」とみなせる。相対エントロピーとは、ある状態がこの基準状態とどれだけ異なるか(情報があるか)を測る量。

まり: この「無境界状態」を「宇宙情報ゼロ状態(真っ白なキャンバス)」とみなし、他の状態との情報の違いでエントロピーを測る。

 

"In the case that the only spacetimes considered correspond to de Sitter vacua with different values of the cosmological constant, this definition leads to sensible results."

訳:もし考慮する時空がすべて、異なる宇宙定数を持つde Sitter空間真空状態対応するならば、このエントロピー定義は理にかなった結果をもたらす。

解説:de Sitter空間とは、宇宙定数が正である膨張する宇宙理想的モデル宇宙定数が違えば、「宇宙の大きさ」や「未来運命」が異なる。そのそれぞれの状態を比べると、エントロピー情報の違い)も整合的に定義できる。

まり:この枠組みでは、「宇宙エントロピーとは何か?」という問いに、de Sitter宇宙を例にして明快な答えが得られるという主張じゃ!

まとめ

このアブストラクトはこう言っておる。

「時空そのものを前提にするのではなく、観測者が感じる現実世界線に沿った演算子たちの代数を使って宇宙記述しよう。

その中で、最大無情報状態ハートル=ホーキング状態基準に、エントロピー情報の量)を定義する。

特にde Sitter宇宙を考えると、この定義はきちんと意味を持ち、現実に即した結論を出してくれるぞ!

クイズ

相対エントロピー(relative entropy)がゼロになるのはどんなときか?

A) 観測者が無限情報を持つとき

B) ある状態基準状態とまったく同じとき

C) 観測者が時間をさかのぼとき

D) ある状態エネルギー最小の状態であるとき

2025-06-16

AブレーンとBブレーンについて

端的に言えば、ある物理理論におけるAブレーンが作る世界構造(圏)と、その双対理論におけるBブレーンが作る世界構造(圏)が一致するという物理的な要請が、数学上の「幾何学ラングランズ対応」という予想そのものを導き出す、という驚くべき対応関係存在する。

AブレーンとBブレーン

AブレーンとBブレーンは、超弦理論において「D-ブレーン」と呼ばれる時空に広がる膜のようなオブジェクト特殊もの

これらはホモロジカルミラー対称性という予想の文脈役割を果たす。

A-ブレーン (A-brane)

シンプレクティック幾何学における「ラグランジアン部分多様体」に対応。これは、時空の「位置」に関する情報を主に捉える対象

Aブレーン全体の集まりは、「深谷圏 (Fukaya category)」と呼ばれる数学的な圏を構成

B-ブレーン (B-brane)

代数幾何学における「正則部分多様体」や「連接層」に対応。これは、時空の「複素構造」やその上の場の状態に関する情報を捉える対象

Bブレーン全体の集まりは、「連接層の導来圏 (derived category of coherent sheaves)」と呼ばれる圏を構成

ミラー対称性とは

ある空間(カラビ・ヤウ多様体 X)のAブレーンが作る世界深谷圏)が、それとは見た目が全く異なる「ミラー」な空間 Y のBブレーンが作る世界(導来圏)と、数学的に完全に等価同値である、という予想。

ラングランズプログラム

ラングランズプログラムは、現代数学で最も重要な予想の一つで、「数論」と「表現論解析学)」という二つの大きな分野の間に、深い対応関係があることを主張。

1. 数論側: 曲線 C 上の「G-局所系」の圏。ここで G はリー群。これはガロア表現幾何学的な類似物と見なせる。

2. 表現論側: 曲線 C 上の「ᴸG-D-加群」の圏。ここで ᴸG は G のラングランズ双対群。これは保型形式幾何学的な類似物。

まり、C上のG-局所系の圏 ≅ C上のᴸG-D-加群の圏 というのが、幾何学ラングランズ対応

物理双対性が結ぶ関係

この一見無関係な二つの世界を結びつけたのが、物理学者アントン・カプスティンとエドワードウィッテン研究

彼らは、N=4 超対称ゲージ理論という物理理論を用いることで、幾何学ラングランズ対応物理現象として自然に現れることを示した。

S-双対

彼らが考えたのは、リーマン面代数曲線)C 上のゲージ理論

この理論にはS-双対性と呼ばれる性質がある。

これは、ゲージ群が G で結合定数が g の理論と、ゲージ群がラングランズ双対群 ᴸG で結合定数が 1/g の理論が、物理的に全く同じ現象記述するというもの

ブレーンと演算子対応

このゲージ理論には、「ループ演算子」と呼ばれる重要物理量が存在し、それらがブレーンに対応

S-双対性が導くラングランズ対応

S-双対性は、G 理論と ᴸG 理論物理的に等価であることを保証

したがって、一方の理論物理的な対象は、もう一方の理論の何らかの物理的な対象対応しなければならない。

カプスティンとウィッテンが示したのは、このS-双対性によって、G 理論の A-ブレーン ( 't Hooft ループ) の世界と、その双対である ᴸG 理論の B-ブレーン(Hecke固有層) の世界が、入れ替わるということ。

物理的に等価である以上、この二つの圏は数学的にも同値でなければならない。そして、この圏の同値性こそが、数学者が予想していた幾何学ラングランズ対応のものだった。

このようにして、弦理論幾何学的な概念であるAブレーンとBブレーンは、ゲージ理論のS-双対性を媒介として、純粋数論の金字塔であるラングランズプログラムと深く結びつけられた。

2025-05-20

delete演算子だけなんかおかし

javascript系列の中で書き方違いすぎて、お前それは嘘だろって言いながら毎回書いてる

2025-05-10

コーティング作業って和文和訳みがある

追加: コーディングです。誤字はずかし🍄

職場でめんどくさい作業VBAとかPowerShellとかで自動化してる。

去年くらいからは生成AIかに相談しながら書いてる。生成AIには、それやりたいならPythonでやったら?って言われる。

セキュリティの都合上、Pythonとかの環境は構築出来ないんだけど、Pythonに興味が湧いた。

どんなかんじなんだろ?と思って、aoj beta勉強してみてる。aoj betaでは、問題が与えられて、そのコード他人がどう回答したかを見ることができる。

人の書いたコードを短い順にして見てると、あー、こういう書き方があるのか!ってなって面白い

高校時代和文英訳をするとき和文和訳が上手い人の解答例を見た時みたいな気持ちよさがある。

問題が、数字ふたつと演算子入力されたときに、その計算結果を出力をしろ演算子が?なら、出力せずに処理を停止しろ。ってものだとする。

私は文字列演算子として受け取る処理も分からんので、とりあえず辞書的に演算子の処理を書いて、演算子が?ならbreak、それ以外なら辞書の処理って書いた。

短いコードの人は、入力されたものをevalで受けて(へー、こんなコマンドがあるんだぁ)、計算エラーならbreak(なるほど!)って書いてた。

競技プログラミングって、こういう楽しさなんだろうなぁ。自分学生時代にもプログラミングの授業とかあればハマったのかもなぁなんて。

2025-04-13

物理学とは何か

物理学概念対応
物体対象 A ∈ 𝒞
力、相互作用 射 f: A → B
法則 射の合成規則 g ∘ f
運動方程式汎関数の変分問題
空間・時空 多様体 𝓜
測定 射影演算子 or 評価写像
対称性群作用 G ⇀ 𝒞
保存則 ノーター定理による群の不変量

2025-03-21

野田はづき不思議専門家たち【講談社FORZA STYLE】

Yahooニュースを見ていると、タイトルからして大変困惑する記事があった。

タイトル以外にも投稿日など色々とこまかく記録しているから、少し見にくいかもしれないが、勘弁してほしい。

1.この記事はなんだろう?

生活保護外国人の方が裕福…」必死に働く母が漏らす本音。揺れる生活保護の今【専門家解説

#社会問題 #トラブル #お金

取材協力】生活アドバイザー|滝本詩織

ソーシャルワーカー経験を持ち、現在生活困窮者の支援活動をするNPO立ち上げに奔走中。

取材・文/野田はづき

https://forzastyle.com/articles/-/74109

どうして困惑たかと言うと、最近話題になっているネタを大変おかし方法でとりあげているからだ。

記事は、外国人生活保護問題が争点になっていると取り上げた後に、唐突生活保護不正受給の話に移る。

違和感をいだいた理由について、もう少し説明してみるために少し引用してみよう。

引用文の前の数字は私がつけたものである

(1) 「在留外国人が増え続ける中で、このあたりは明確にしておかなければ、後々問題になりかねません。そもそも70年以上前と今では環境もまるで違います。適切な給付のためには一刻も早く議論されるべきだと感じています

(2)生活保護に関しては不正受給にまつわる話題もたびたび持ち上がる。

(3)「例えば、2021年厚生労働省の報告によると不正受給件数は27,891件。金額にすると11,045,045円。一見多いように見えます生活保護負担金がおよそ3.8兆円と考えるとおよそ0.3%ほどです。しかしこれがリアル数字なのかはわかりません。不正がまかり通っている可能性も否定はできない。本当に必要な人に行き渡るはずのお金がそうでないところに渡っているとしたら?国民として怒りを持って当然です」

(4)今回取材をしたケースは、まさに困窮する日本人家庭と生活保護を受け悠々自適に暮らす外国人家庭の対照的な姿だった。

(1)で外国人生活保護問題について「専門家」の発言から

(2)で話題が変わり、

(3)不正受給の話について、「専門家」の発言が続く。ここでの話題外国人ではなく、生活保護全体の話である

それにもかかわらず(4)になると困窮/悠々自適労働者生活保護受給者、日本人家庭/外国人家庭というわかりやす憎悪あおりやす二項対立に戻している。

あれ、話題変わったんじゃなかったの? どうして、混ぜるの? アテンションエコノミーヘイトがんばっちゃう系?

ちなみに、野田はづき氏が「取材したケース」は次の記事である

【関連記事外国人生活保護者が悠々自適に暮らすリアル愕然。真面目に働く日本人バカを見る日本の行く末

2025.3.20

#社会問題 #子供 #お金

取材・文/野田はづき

https://forzastyle.com/articles/-/74109

2.不思議専門家たち

この記事の「専門家」というのも大変不思議な方である

専門家というからには、このように記事名前が出てくるからには、それなりの活動実績があり、それは今の御時世、ネット上で名前が出てくるはずだが、この記事以外に名前が出てくることはない。

執筆者野田はづき氏は、専門家を探すのが大変お上手なようである

長年日本教育環境取材を重ねている。自身も子を育てた経験からPTA問題などにも詳しい。

モンペギャングが溢れかえる公立小学校…」 先生バカにする子どもたちと躾けない親が増える令和の教育現場という地獄専門家警笛】

という「ジャーナリストの花山真衣」氏も

保健師心理カウンセラー資格を持ち、さまざまな夫婦関係にまつわる相談に乗っている。

「いつでもヤレるのが夫婦のいいところ」は本当か。見落とされがちな夫婦間の性的同意という難問【専門家解説

という「夫婦関係コンサルタント木村りほ」氏も

保健師資格を持ち、青少年の性に関する相談を受けるコンサルタントとしても活動中。

「娘はイヤと言ってない」女子高生風呂に入り続ける父親に波紋。家族距離と性にまつわる大問題専門家警笛】

という「小嶋真子」氏も

その活動は謎に包まれている。

他にも名前は上げていないが、活動実績が謎に包まれ専門家たちのオンパレードだ。

唯一、「危機管理コンサルタント平塚俊樹氏」だけは同名でコンサルタントをやっている方を目にすることができた。

ただ、多産DVや親から子への性暴力というのは、危機管理コンサルタントの専門範囲なのだろうか。

検索結果を見る限り、クレーム対応守備範囲のようにみえるがどうなのだろうか。

危機管理コンサルタントはありとあらゆる危機対応するものだ常在戦場とか言われたら、申し訳ございませんとしか謝るしかないが、私の認識の中では専門家というのは、専門的な教育や訓練を一定期間経たものである物理学者精神分析専門家ではないだろうし、英文学者が食事療法について本を出していても、私はそれを専門家著作とは認識できない。

3.新進気鋭のライターが#社会問題を鋭く斬る?

FORZA STYLEなるウェブサイトの#社会問題クリックしてみると、いろいろと面白いことがわかる。

まずは、野田はづき氏はものすごく精力的に活動している。

それなのに、同じような形式記事を書くライターからまるでバトンタッチするかのように受け継いで、突如としてあらわれている。

念の為検索演算子を使って下記の様なキーワード検索をかけてみた。

野田はづき site:https://forzastyle.com/

3月9日あたりからあらわれて、ほぼ毎日、2週間弱で20ほどの記事投稿している。

これだけ様々な記事、それも、その時々で耳目を集めそうなものばかりを専門家取材し、現地で取材をし、次から次に出せるというのは、ものすごい新星あらわると嫉妬まじりで憧れてしまう。

ちなみにどういうわけか、頭がどんどん痛くなってきてしっかりと調べきれていない――野田はづき氏の爪の垢でも煎じて飲むべきかもしれない――が、このような新星は、野田氏の前にもたくさんいたようだ。

専門家取材した記事短期間で量産し、消えていく新進気鋭のライターたち。

4.講談社ユーモア

ここでさら困惑することがあった。

FORZA STYLEというサイト講談社サイトなのだ

講談社といえば、言わずとしれた由緒正しい出版社である

文学作品や良質なルポ(そういえば、講談社ノンフィクション賞とかあったね)、講談社現代新書、みんながお世話になっているだろう良質な本を出す出版社だ。

ここで働いている方々は大変頭が良いと勝手に思っているし、勝手尊敬もしている。

それが、ぱっと見ただけでわかるおかし記事を通している。

手に持っているのがかまぼこ板でないならば、そっこうで調べられるようなこと、すなわち「専門家問題とかすぐにわかるだろう。

それをやっていないということが示すのは、能力的にできなかったのではなく、わかっていてやらなかったということととられても仕方がない。

もちろん、調べた私が馬鹿なだけで、なんの問題もない記事なのかもしれない。それはそれで新進気鋭のライターを次から次に使い潰しているといわれても仕方がないだろう。

どちらにせよ、講談社は、はやめに対処したほうが良い。

あれ、もしかして講談社を騙る詐欺サイトだったりするのかしら?

そうであれば、やっぱり、はやめに対処したほうが良い。

あと、FORZA STYLE「ユーモア紳士のたしなみ」と書いているが、humorじゃなくてrumorの誤植?かもしれない。

もし、ノーチェックでなんでも載せているというのならば、今度、このポエムも載せてください。

2025-02-16

キュアキュンキュンというDQN丸出しプリキュアについて

まず 「キュンキュン=DQN 」を証明する。

キュンキュン」は「ラブラブ」や「チンチン」のように、一つの単語を反復することによって程度の強さを強調している。また、「ド」も同様に「ド変態」や「ドスケベ」、「ドン・キホーテ」のように程度の強さを強調している。よって「キュンキュン=DQN 」。

キュンキュン=DQN 」に左側から「キュア演算子」を作用させることによって、「キュアキュンキュン=キュアDQN」。「 キュアDQN」は「DQN丸出しプリキュアであるから、「 キュアキュンキュン=DQN丸出しプリキュア」。よって題意は証明された。

また、DQNドキュソに置換可能であるから、「キュアキュンキュン」も「キュアキュソキュソ」に置換可能である

2025-02-01

量子観測問題について

まず、標準的量子力学において、系の状態は複素ヒルベルト空間 𝓗 のベクトルによって記述される。

純粋状態正規化された状態ベクトル ∣ψ⟩ で表され、混合状態密度行列 ρ によって記述される。

測定とは、物理量対応する自己共役演算子 A の固有値に関する確率的な過程であり、波動関数の収縮(射影仮説)が導入される。

この非ユニタリ過程と、シュレーディンガー方程式によるユニタリ時間発展との矛盾観測問題本質である

1. 量子状態とその時間発展

状態ヒルベルト空間 𝓗 の要素として、純粋状態 ∣ψ⟩ により表される。正規化条件は以下の通りである

⟨ψ∣ψ⟩ = 1

より一般に、混合状態密度行列 ρ により記述され、以下を満たす。

ρ ≥ 0, Tr(ρ) = 1

量子系の時間発展は、ハミルトニアン H によりシュレーディンガー方程式記述される。

i ℏ d/dt ∣ψ(t)⟩ = H ∣ψ(t)⟩

これを解くことで、時間発展演算子 U(t) が得られる。

U(t) = exp(− i H t / ℏ)

この U(t) はユニタリであり、量子力学基本法則の一つである

2. 測定の数学的定式化

量子力学において、観測可能量 A は自己共役演算子であり、スペクトル定理により直交射影 P_a を用いて分解される。

A = ∑ a P_a

ここで、P_a は固有空間への射影演算子であり、

P_a P_b = δ_ab P_a, ∑ P_a = I

を満たす。

測定時、状態 ∣ψ⟩ において固有値 a が得られる確率ボルン則に従う。

p(a) = ⟨ψ∣P_a∣ψ⟩

また、測定後の状態波動関数の収縮により、

∣ψ⟩ → P_a ∣ψ⟩ / √⟨ψ∣P_a∣ψ⟩

と変化する。

この過程は非ユニタリであり、シュレーディンガー方程式ユニタリ時間発展と両立しない。

3. 観測問題の核心

3.1 ユニタリ時間発展と波動関数収縮の矛盾

ユニタリ進化による時間発展では、状態決定論的かつ線形である

∣ψ(t)⟩ = U(t) ∣ψ(0)⟩

しかし、測定後の状態は射影仮説により確率的かつ非ユニタリに変化する。

この二重構造が、量子観測問題の根源である

3.2 測定装置との合成系のユニタリ進化

測定対象 S と測定装置 M を考え、初期状態

∣Ψ(0)⟩ = ∣ψ⟩_S ⊗ ∣M_0⟩_M

とする。測定相互作用 H_int により、時間発展は

∣Ψ(t)⟩ = U(t) ∣Ψ(0)⟩

となり、測定が完了すると、

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M

のようにエンタングルした状態となる。ここで、測定装置の指示状態 ∣M_a⟩_M は S の固有状態 ∣a⟩_S に対応する。

しかし、ユニタリ進化の枠組みでは、この重ね合わせが自発的単一の結果へと収縮するメカニズム存在しない。したがって、なぜ一つの結果のみが観測されるのかという問題が発生する。

4. 主要な解決アプローチ

4.1 コペンハーゲン解釈

標準解釈では、測定は基本的プロセスであり、それ以上の説明は与えられない。観測行為のもの確率的収縮を引き起こすとする立場である

4.2 多世界解釈

エヴェレットの多世界解釈では、測定後の状態

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M

において、各分岐した世界独立した現実として存在すると考える。この解釈では波動関数の収縮を仮定せず、すべての可能性が並存する。

4.3 デコヒーレンス理論

環境 E を考慮すると、S+M+E の全体系の時間発展は

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M ⊗ ∣E_a⟩_E

となる。環境自由度トレースアウトすると、

ρ_S+M = ∑ |c_a|² ∣a⟩⟨a∣ ⊗ ∣M_a⟩⟨M_a∣

となり、オフダイアゴナル成分が消滅する。この過程デコヒーレンスであり、実効的に波動関数の収縮を説明するが、依然として観測者の経験との対応説明する必要がある。

5. 結論

量子観測問題は、量子系のユニタリ時間発展と測定における非ユニタリな収縮の矛盾に起因する。

標準的コペンハーゲン解釈では測定過程を基本仮定とするが、多世界解釈デコヒーレンス理論を用いることで、より整合的な説明が試みられている。

しかし、いずれの理論も、なぜ一つの観測結果が特定観測者に現れるのかを完全に説明するには至っていない。

2024-07-13

anond:20240713095741

まあ一度決まったことはなかなか覆らないよな

プログラム言語歴史をもう一度やり直せるなら文字列結合演算子とかも統一したいし

ログイン ユーザー登録
ようこそ ゲスト さん