はてなキーワード: グラムとは
僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。
コーヒーは精密に計量した7.4グラム、抽出温度は92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。
寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。
友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論の議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピー増である。
今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリの対象として再解釈することに時間を費やした。
物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーのラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。
局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論的双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。
ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性が位相的モジュライ不変量として現れる点だ。
もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子が物理的対称性の生成子へとマップされる、といった具合に理解するとよいだろう。
ただし僕の考察は抽象化の階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。
僕は朝からこのアイデアの微分的安定性を調べ、スペクトル系列の収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。
結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合な境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。
日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。
買い物リストは確率論的に最適化していて、食品の消費速度をマルコフ連鎖でモデル化している。
ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源を節約するための合理的なエンジニアリングに他ならない。
インタラクティブなエンタメについてだが、今日触れたのはある対戦的収集型カードの設計論と最新のプレイメタに関する分析だ。
カードの設計を単なる数値バランスの問題と見做すのは幼稚で、むしろそれは情報理論とゲーム理論が交差する点に位置する。
ドロー確率、リソース曲線、期待値の収束速度、そして心理的スケーリング(プレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境は健全な競技循環を失う。
友人たちが議論していた最新の戦術は確かに効率的だが、それは相手の期待値推定器を奇襲する局所的最適解に過ぎない。
長期的な環境を支えるには、デッキ構築の自由度とメタの多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。
一方、漫画を巡る議論では、物語構造と登場人物の情報エントロピーの関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語のテンポと読者の注意持続時間を定量化できる。
これは単なる趣味的な評論ではなく、創作の効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品を合理的に解析することは否定されるべきではない。
夜も更け、僕は今日の計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。
知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。
今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。
眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: The Last Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
ABURI百貫
いしがまやハンバーグ
小木曽製粉所
柿安 Meat Express
果汁工房 果琳 2F
果汁工房 果琳 3F
牛たん炭焼 利久
ゴーゴームンバイ
サンクゼール
J.S. BURGERS Jr.
上等カレー
杉養蜂園
花粥 HANAKAYU
パルメナーラ
ピアサピド
ミルキッシモ
揚げ天まる
いきなり!ステーキ
1丁目1番地
回転寿司みさき
こめらく
すし屋 田ざわ
スターバックス コーヒー 越谷イオンレイクタウンkaze2階 カフェプラザ店
スターバックス コーヒー 越谷イオンレイクタウンkaze2階 レイクタウンゲート店
炭焼ステーキくに
蕎麦きり みよた
チーズガーデン
ティーヌン
富澤商店
鶏五味
ハンドベイクス
韓美膳(ハンビジェ)
パントリエ
HULA TO GO
フロ プレステージュ
メゾン・イチ プリュス
モミ&トイズ
利久食堂
和食飛賀屋
KAKITANE KITCHEN / かきたねキッチン
Krispy Kreme Doughnuts / クリスピー・クリーム・ドーナツ
Sylvanian Kitchen / シルバニア 森のキッチン
STARBUCKS COFFEE / スターバックス コーヒー
ZHANGLIANG MALATANG / 張亮麻辣湯
DOG DEPT / ドッグデプト
DOUTOR COFFEE SHOP / ドトールコーヒーショップ
鍋に米を500グラム入れる際、今まではかなり手間だった。
まず米の袋をキッチンスケールに乗せ重さを読み取る。そして少しずつ米を注いでいき最初の重さ-500グラムのところで終了する。
だが一度に注ぐ量が少なすぎると何回も繰り返す必要があり効率が悪い。
逆に一度に多く入れすぎると目標の量をオーバーしてしまう。鍋から袋には戻せない(覆水盆に帰らず)。
すなわち米の袋ではなく鍋を量るのだ。
キッチンスケールの上に鍋を置いておき米を注ぐと即座に現在の重さがわかる。
これを利用して、-500グラムではなく+500グラムを計算し、それを目標にすればいい。
僕は今、いつもの座席に鎮座している。ルームメイトはリビングのソファでパズルゲームを無言で進めており、隣人はサブカル系の配信をしているらしく時折笑い声が廊下を渡ってくる。
友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。
僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒーの抽出器具を90秒で予熱し、温度は92.3℃±0.2℃に保つという無駄に精細な儀式がある。
靴下は左足から履く。出勤前の15分は必ず抽象数学のノートを眺め、最近は圏論的位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。
これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的な行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。
仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。
具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。
これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態のトレースが始まり、友人たちの雑談に混じる気力が萎える。
超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。
僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相的量子群の代数的類・モジュライ化)を用いて再定義する実験をしている。
言い換えれば、従来の共形場理論的な世界面パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバーの自己同型群をモナドとして扱うことで、局所的に見える弦状態の同値類を圏的に集約する。
さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジーの級数展開における位相的位相因子の再正規化が鍵となる)。
この構成を、最新の抽象数学的モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応の双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。
加えて、僕はこの考えをある講義資料やトークの示唆と照らして取り入れており、その資料は概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。
僕は「誰も理解できないものを言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。
ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。
食事の配列はプレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルツリー表を更新して趣味的投資の累積効用を整数化している。
コミックは最新巻が出ると即座にページごとのフレーム密度と作画のトーンワークを技術的に解析し、特に背景のディテールに含まれるトーンの反復パターン(いわば視覚的フーリエ成分)をスコア化する。
ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムのギミック、ドロップ率、レベリング曲線、そして対戦環境のテンプレート化された最適戦略について延々と解析する。
ただしゲームやコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。
たとえば今日友人が語っていた新作のギミックについては、その期待効用をELO的な評価尺度でランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。
だが脱力する暇は短く、夜の自習時間には再び圏論的比喩に戻り、各行動の符号化を試す。
日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである。
友人たちはこれを笑うが、彼らもまた各自の無意味な儀式に固執している。
コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。
各キャラの台詞数、出番頻度、描写の感情強度をパラメータ化し、二次創作が生成される確率空間を推定する実験をしている。
この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。
眠りに入る前に、僕は明日の論文ノートに小さな疑問を三つ書き付ける。
第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラスの計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である。
これらを洗い出しておけば、僕は安心して眠れる。
ルームメイトがゲームのボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。
僕は日記を閉じ、明日のコーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。
ゴールドで測ると、同じ1万円で買えるモノの量が半分になっています。
| 時期 | ゴールド価格(円/g) | ゴールド建てで見た円の購買力 |
| 2024年3月 | 約10,000円 | 1.0 |
| 2025年10月 | 約20,000円 | 0.5 |
つまり、ゴールドを基準にすれば「円が半分の通貨」になったということです。
スーパーの1000円弁当は、ゴールド建てで見ると500円に見えます。
円を現金で持っている人は、円安とインフレによって「静かに損している」状態にあります。
一方、ゴールドは通貨の劣化に連動して値上がりするため、ゴールドを保有している人にとっては
通貨の信頼が崩れる時代における合理的な自己防衛手段なのです。
円が下がり続けている今、1グラム2万円という価格は「高い」のではなく、“円が安い”からそう見えているだけです。
たとえば、2024年に1グラム1万円だったときに買わなかった人が、 今「2万円は高い」と言っているなら、 実際には円を持っていたせいで購買力を半分失ったことになります。
本質的に、ゴールドは“上がった”のではなく、通貨が下がった結果として、同じ価値を維持しているのです。
ゴールドの価格は過去最高でも、通貨の信頼が過去最低なら、それは「まだ高くない」ということです。
円をゴールドに替えると、確かに普段の買い物をお得に感じます。
しかしそれは「自分が賢く儲けている」のではなく、周囲の通貨が沈んでいるから浮いて見えるだけです。
ゴールドを持っている人が乗っているのは、沈む船から離れた救命ボートです。
ボートが上がったのではなく、大半の人が乗っている船が沈んでいるのです。
行動経済学のプロスペクト理論では、人は「損失の痛み」を避けようとします。
しかし実際には、確実な小さな損よりも不確実な大損を選ぶ傾向があります。
円の購買力が落ちていることを知っていても、「ゴールドを買うのが怖いから」と動かないのはこの心理の典型例です。
確実に損する現金を選ぶのは、損失回避バイアスの裏返しなのです。
つまり「何も考えていない」のではなく、損を感じないように社会と教育が設計されているのです。
いま世界では、中国、ポーランド、シンガポールなどが過去最大ペースでゴールドを買っています。
一方、日本は外貨準備のほとんどが米国債で、ゴールドはわずか数%です。
トランプ関税でインフレになって、FRBが利下げどころか利上げをせざるを得なくなり、万が一米国が借金を返せなくなり、アメリカがデフォルトすれば、日本の資産価値は大幅に毀損します。
つまり国家レベルでは「ゴールドを持たないリスク」が存在しています。
個人がゴールドを保有することは、国家が持っていないものを自分で持つという、極めて合理的な行動です。
円が沈む時代に、日本に住みながらゴールドで世界を測る人はまだ少数派です。
しかし、その少数派こそが「目に見えない損失」を避けているのです。
猫ひっかき病は日本では全国調査がされていないために患者数は不明ですが、おそらく全国で年間2万人程度であろうと言われています。
この病気の病原体は最近までわかりませんでしたが、1992年にグラム陰性の桿菌であるバルトネラ・ヘンセレ(Bartonella henselae)であることが判りました。
症状は主にリンパ節炎で、ネコに引っ掻かれた後10日頃から傷が赤くはれ、手の傷なら腋窩(脇の下)リンパ節が、足の傷なら鼠径(足の付け根)リンパ節が腫れ上がり、時には鶏の卵くらいになります。ほとんどの人で微熱が長く続き、全身倦怠、関節痛、吐き気等があります。
治るまで数週間から場合によっては数ヶ月かかることもあります。
バルトネラ・ヘンセレはエイズの患者さんに多い細菌性血管腫からも検出されており、免疫不全の人や、免疫能力の落ちたお年寄りでは同じような症状を起こすことも考えられます。重症例では麻痺や脊髄障害の例も報告されています。
僕が三週間かけて導出したp進弦理論の局所ゼータ関数上の正則化項を書き直せると思ったら大間違いだ。
あの計算は、ウィッテンでも手を出さない領域、すなわち、p進版のAdS/CFT対応をde Sitter境界条件下で非可換ゲージ群に拡張する試みだ。
通常の複素解析上では発散する項を、p進体のウルトラメトリック構造を利用して有限化することで、非摂動的な重力の相関関数を再構成できる。
だが、問題はそこにある。p進距離は三角不等式が逆転するので、局所場の概念が定義できない。
これはまるで、隣人がパンケーキを焼くときに「ちょっと目分量で」と言うのと同じくらい非論理的だ。
朝食はいつものように、オートミール42グラム、蜂蜜5グラム、カフェイン摂取量は80mgに厳密に制御した。
ルームメイトはまたしても僕のシリアルを間違って開けたが、僕はすでにこのような異常事態に備えて、バックアップとして同一銘柄を3箱ストックしてある。
僕が秩序を愛するのは強迫ではなく、宇宙の熱的死に抗うための小さな局所秩序の創出だ。
今日の研究は、T^4コンパクト化されたIIb型超弦理論のD3ブレーン上における非可換ゲージ理論の自己双対性。
通常、B場を導入することで非可換パラメータθ^{μν}が生成されるが、僕の考察では、θ^{μν}をp進値に拡張することで、通常のMoyal積が局所的整数体上で閉じない代数構造を持つ。
これが意味するのは、物理的空間が離散的p進層として現れるということ。言い換えれば、空間そのものが「整数の木構造」になっている。
ルームメイトが「木構造の空間って何?」と聞いたが、僕は優しく、「君の社交スキルのネットワークよりは連結性が高い」とだけ答えておいた。
午後は友人たちとゲームをした。タイトルはエルデンリング。だが彼らのプレイスタイルには忍耐が欠けている。
僕がビルドを純粋知力型にしてカーリア王笏を強化している間に、彼らは無計画に突っ込んではボスに殺されていた。
統計的に見ても、平均的なプレイヤーの死亡原因の82%は戦略ミスに起因する。
僕は「量子重力のパス積分と違って、こっちはセーブポイントがあるんだ」と指摘したが、誰も笑わなかった。理解力が足りないのは罪だ。
夜、コミックを再読した。ウォッチメンのドクター・マンハッタンの描写は、量子決定論の詩的表現として未だに比類ない。
あの青い身体は単なる放射線の象徴ではなく、観測者のない宇宙の比喩だ。
僕が大学時代に初めて読んだとき、「ああ、これは弦の振動が意識を持った姿だ」と直感した。
今日もそれを確かめるため、ドクター・マンハッタンが時間を非線形に認識するシーンを分析し、p進時空における時間関数t→|t|_pの不連続性との対応を試みた。
結果、彼の非時間的意識は、実はp進的時間座標における不連続点の集積と一致する。つまり、マンハッタンはp進宇宙に生きているのだ。
寝る前に歯を磨く時間は、時計が23:00を指してから90秒以内に開始しなければならない。これは単なる習慣ではなく、睡眠周期を最大化するための生理学的最適化だ。
音楽は再生しない。音波は心拍数を乱すからだ。ただし、ゼルダの伝説 時のオカリナのエンディングテーマだけは例外だ。あれは時間対称性を感じさせる旋律だから。
僕の一日は、非可換幾何と行動最適化の連続体でできている。宇宙のエントロピーが増大しても、僕の部屋の秩序は一定だ。つまり、少なくともこの半径3メートルの範囲では、熱的死はまだ先の話だ。
どこ住み?会える?てかテレグラムやってる?
目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。
ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態の位相をわずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。
隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。
友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタンの応答時間をミリ秒単位で記録する。
これが僕の日常のトレースの上に物理的思考を埋葬するための儀式だ。
さて、本題に入ろう。今日はdSの話などではなく、もっと抽象的で圧縮された言語で超弦理論の輪郭を描くつもりだ。
まず考えるのは「理論としての弦」が従来の場の量子論のS行列的表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。
開弦・閉弦の相互作用は局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。
これを厳密にするには、オペラド(特にmoduli operad of stable curves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。
導来スタック(derived Artin stack)上の「積分」は仮想基本クラスの一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間に自然に現れる古典的BV構造そのものだ。
さらに、Kontsevichの形式主義を導来設定に持ち込み、シフト付ポアソン構造の形式的量子化を検討すれば、非摂動的効果の一部を有限次元的なdeformation theoryの枠組みで捕まえられる可能性がある。
ここで重要なのは「関手的量子化」すなわちLurie的∞-圏の言語で拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張場理論の対象として弦理論を組み込むことだ。
特に、因果的構造や境界条件を記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所的観測子代数の因子化ホモロジーが2次元世界面CFTの頂点代数(VOA)につながる様が見えてくる。
ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティックコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。
物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。
Dブレインは導来カテゴリ(整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。
実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態はドナルドソン–トーマス不変量や一般化されたDT指数として計算される。
ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ的量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。
さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuper version、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。
閉弦場理論のstring field theoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomological obstructionを制御する。
より高次の視座では、場の理論の「拡張度」はn-圏での対象の階層として自然に対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論の場合はターゲットが無限次元であるため古典的公理系の単純な拡張では捉えきれない。
ここで我々がやるべきは、∞-オペラド、導来スキーム、シフト付きシンプレクティック構造、A∞/L∞ホモロジー代数の集合体を組織化して「弦の導来圏」を定義することだ。
その上で、Freed–Hopkins–Telemanが示したようなループ群表現論とツイストK理論の関係や、局所的なカイラル代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。
これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実の専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーンを右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。
夜、友人たちと議論をしながら僕はこれら抽象的構造を手癖のように引き出し、無為に遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択が位相的にどのような帰結を生むかを示す。
彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。
結局、僕の生活習慣は純粋に実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである。
明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論の輪郭をさらに一行ずつ明確にしていくつもりだ。