はてなキーワード: BICとは
東京23区と周辺のいくつかの市で、東京選挙区での参政党の得票率がどんな要因と関係しているのか、軽い気持ちで回帰分析してみた。
変数の多重共線性とか処理はガバガバなので軽い気持ちで見てほしいんだが、ざっくりまとめると、「大学院卒業者の割合」が高い地域では得票率が低く、「役員の割合」が高い地域では逆に得票率が高い、という傾向がありそう。
使ったデータはNHKが出している投票所別の得票率。手入力なので誤りがあるかもしれない。
それに、東京都の人口統計と国勢調査(令和2年の)などから市区町村ごとの属性データをくっつけて、変数を一律で標準化したうえで回帰分析を行った。
都内の市区町村のうち、データが揃ってる27地域を対象にした(23区+町田・八王子・調布・西東京)。
20万人以上の市しか一部のデータが見つけられなくて、そこはごめんって感じ。
まず、説明変数を11個使って線形回帰分析をしたところ、決定係数は0.83(調整済み決定係数は0.71)だった。何を使ったかは後で。
そこから影響が特に大きそうな4変数(平均年齢、大学院卒業者割合、役員の割合、情報通信業の割合)に絞って分析し直すと、決定係数は0.73(調整済み決定係数は0.68)になった。
詳しくはこれ
国勢調査は5年に1回しかなくて、最新の結果が令和2年のだった。
4つの変数の関係を見てみると、平均年齢は他の3つの変数(大学院卒、役員、情報通信業)と負の相関を持っていた(相関係数 < -0.69)。一方、大学院卒業者の割合・役員の割合・情報通信業の割合は互いに中程度以上の正の相関(相関係数 > 0.5)を持っており、特に大学院卒と役員の間の相関係数は0.75と大きかった(いずれもピアソン相関)。
ただし、回帰係数を見ると、興味深い違いがある。大学院卒業者の割合、平均年齢、情報通信業の割合はいずれも負の係数を持っていて、これらが高いと参政党の得票率は下がる傾向がある。一方で、役員の割合は正の係数を持っていた。
| 市区町村 | 参政党得票率(NHK) | 予測値_参政党得票率 | 平均年齢(令和7年1月) | 大学院卒業者割合(令和2年国勢調査) | 役員の割合(令和2年国勢調査) | 情報通信業の割合(令和2年国勢調査) |
| 千代田区 | 9.4 | 9.6 | 42.69 | 0.088 | 0.162 | 0.115 |
| 中央区 | 9.8 | 9.3 | 42.17 | 0.075 | 0.126 | 0.135 |
| 港区 | 10.1 | 10.4 | 43.48 | 0.065 | 0.171 | 0.131 |
| 新宿区 | 9.4 | 9.5 | 44.08 | 0.052 | 0.097 | 0.129 |
| 文京区 | 7.4 | 7.6 | 43.35 | 0.097 | 0.098 | 0.118 |
| 台東区 | 10 | 10.1 | 45.59 | 0.041 | 0.109 | 0.112 |
| 墨田区 | 10.1 | 9.8 | 44.88 | 0.035 | 0.073 | 0.115 |
| 江東区 | 9 | 9.4 | 44.82 | 0.041 | 0.069 | 0.12 |
| 品川区 | 9 | 8.6 | 44.34 | 0.056 | 0.077 | 0.143 |
| 目黒区 | 9 | 9.4 | 44.88 | 0.05 | 0.109 | 0.137 |
| 大田区 | 9.9 | 9.5 | 45.67 | 0.039 | 0.069 | 0.105 |
| 世田谷区 | 9.9 | 9.4 | 45.19 | 0.047 | 0.097 | 0.128 |
| 渋谷区 | 10 | 9.7 | 44.8 | 0.054 | 0.142 | 0.152 |
| 中野区 | 9.5 | 9.3 | 44.57 | 0.038 | 0.072 | 0.141 |
| 杉並区 | 8.5 | 8.9 | 45.23 | 0.047 | 0.076 | 0.136 |
| 豊島区 | 9.6 | 9.5 | 44.05 | 0.044 | 0.081 | 0.132 |
| 北区 | 9.2 | 9.4 | 45.74 | 0.036 | 0.058 | 0.107 |
| 荒川区 | 9.4 | 9.9 | 46.23 | 0.032 | 0.071 | 0.096 |
| 板橋区 | 9.9 | 10.0 | 45.73 | 0.027 | 0.059 | 0.099 |
| 練馬区 | 10.3 | 9.6 | 45.5 | 0.034 | 0.068 | 0.113 |
| 足立区 | 10.5 | 10.7 | 46.74 | 0.017 | 0.063 | 0.073 |
| 葛飾区 | 10 | 10.4 | 46.52 | 0.02 | 0.061 | 0.083 |
| 江戸川区 | 11 | 10.7 | 45.09 | 0.021 | 0.062 | 0.085 |
| 八王子市 | 10.1 | 9.7 | 48.31 | 0.029 | 0.054 | 0.054 |
| 町田市 | 10 | 9.5 | 48.16 | 0.031 | 0.058 | 0.068 |
| 調布市 | 8.6 | 9.4 | 45.66 | 0.035 | 0.06 | 0.113 |
| 西東京市 | 9.1 | 9.5 | 46.9 | 0.028 | 0.055 | 0.102 |
雑なモデルなので話半分でね。
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.730
Model: OLS Adj. R-squared: 0.680
Method: Least Squares F-statistic: 14.84
Date: Mon, 21 Jul 2025 Prob (F-statistic): 5.09e-06
Time: 07:21:02 Log-Likelihood: -20.653
No. Observations: 27 AIC: 51.31
Df Residuals: 22 BIC: 57.78
Df Model: 4
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 1.277e-15 0.111 1.15e-14 1.000 -0.230 0.230
x1 -0.5743 0.230 -2.493 0.021 -1.052 -0.096
x2 -1.3278 0.204 -6.512 0.000 -1.751 -0.905
x3 0.8670 0.174 4.973 0.000 0.505 1.229
x4 -0.5382 0.169 -3.184 0.004 -0.889 -0.188
==============================================================================
Omnibus: 2.233 Durbin-Watson: 2.170
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.169
Skew: -0.035 Prob(JB): 0.557
Kurtosis: 1.983 Cond. No. 4.48
==============================================================================
| 変数 | 回帰係数 |
| 平均年齢(令和7年1月) | -0.78 |
| 1世帯あたり人口 | -0.31 |
| 男性率(令和7年1月) | 0.07 |
| 外国人比率(令和7年1月) | -0.07 |
| 5年間外国人割合変化 | 0.27 |
| 犯罪認知割合 | -0.05 |
| 大学院卒業者/全卒業者(令和2年国勢調査) | -1.77 |
| 不詳者/全卒業者(令和2年国勢調査) | -0.51 |
| 従業上の地位:役員の割合 | 1.39 |
| 従業上の地位:自営業主の割合 | 0.09 |
| 産業区分:情報通信業の割合 | -0.53 |
| 地域 | 参政党得票率(NHK) | 予測値_参政党得票率 | 平均年齢(令和7年1月) | 1世帯あたり人口 | 男性率(令和7年1月) | 外国人比率(令和7年1月) | 5年間外国人割合変化(令和2年から7年) | 犯罪認知割合(令和6年件数/令和7年人口) | 大学院卒業者/全卒業者(令和2年国勢調査) | 不詳者/全卒業者(令和2年国勢調査) | 従業上の地位:役員の割合(令和2年国勢調査) | 従業上の地位:自営業主の割合(令和2年国勢調査) | 産業区分:情報通信業の割合(令和2年国勢調査) |
| 千代田区 | 9.4 | 9.5 | 42.69 | 1.75 | 0.50 | 0.06 | 1.22 | 0.04 | 0.09 | 0.36 | 0.16 | 0.09 | 0.12 |
| 中央区 | 9.8 | 9.8 | 42.17 | 1.76 | 0.48 | 0.07 | 1.33 | 0.01 | 0.08 | 0.28 | 0.13 | 0.08 | 0.14 |
| 港区 | 10.1 | 10.0 | 43.48 | 1.74 | 0.47 | 0.08 | 1.08 | 0.01 | 0.07 | 0.42 | 0.17 | 0.10 | 0.13 |
| 新宿区 | 9.4 | 9.0 | 44.08 | 1.52 | 0.50 | 0.14 | 1.12 | 0.02 | 0.05 | 0.39 | 0.10 | 0.09 | 0.13 |
| 文京区 | 7.4 | 7.5 | 43.35 | 1.80 | 0.48 | 0.07 | 1.32 | 0.01 | 0.10 | 0.25 | 0.10 | 0.08 | 0.12 |
| 台東区 | 10.0 | 10.3 | 45.59 | 1.58 | 0.51 | 0.09 | 1.21 | 0.01 | 0.04 | 0.36 | 0.11 | 0.09 | 0.11 |
| 墨田区 | 10.1 | 10.1 | 44.88 | 1.69 | 0.49 | 0.06 | 1.25 | 0.01 | 0.04 | 0.28 | 0.07 | 0.07 | 0.12 |
| 江東区 | 9.0 | 9.2 | 44.82 | 1.84 | 0.49 | 0.07 | 1.23 | 0.01 | 0.04 | 0.27 | 0.07 | 0.06 | 0.12 |
| 品川区 | 9.0 | 8.6 | 44.34 | 1.73 | 0.49 | 0.04 | 1.19 | 0.01 | 0.06 | 0.24 | 0.08 | 0.07 | 0.14 |
| 目黒区 | 9.0 | 9.3 | 44.88 | 1.74 | 0.47 | 0.04 | 1.19 | 0.01 | 0.05 | 0.35 | 0.11 | 0.10 | 0.14 |
| 大田区 | 9.9 | 9.7 | 45.67 | 1.77 | 0.50 | 0.04 | 1.26 | 0.01 | 0.04 | 0.23 | 0.07 | 0.07 | 0.11 |
| 世田谷区 | 9.9 | 9.3 | 45.19 | 1.84 | 0.47 | 0.03 | 1.22 | 0.01 | 0.05 | 0.30 | 0.10 | 0.10 | 0.13 |
| 渋谷区 | 10.0 | 9.9 | 44.80 | 1.61 | 0.48 | 0.06 | 1.12 | 0.02 | 0.05 | 0.34 | 0.14 | 0.12 | 0.15 |
| 中野区 | 9.5 | 9.5 | 44.57 | 1.57 | 0.51 | 0.07 | 1.20 | 0.01 | 0.04 | 0.33 | 0.07 | 0.09 | 0.14 |
| 杉並区 | 8.5 | 8.9 | 45.23 | 1.73 | 0.48 | 0.04 | 1.19 | 0.00 | 0.05 | 0.26 | 0.08 | 0.09 | 0.14 |
| 豊島区 | 9.6 | 9.5 | 44.05 | 1.57 | 0.50 | 0.12 | 1.21 | 0.01 | 0.04 | 0.34 | 0.08 | 0.09 | 0.13 |
| 北区 | 9.2 | 9.2 | 45.74 | 1.71 | 0.50 | 0.09 | 1.31 | 0.01 | 0.04 | 0.31 | 0.06 | 0.07 | 0.11 |
| 荒川区 | 9.4 | 9.6 | 46.23 | 1.77 | 0.50 | 0.11 | 1.19 | 0.01 | 0.03 | 0.29 | 0.07 | 0.08 | 0.10 |
| 板橋区 | 9.9 | 10.0 | 45.73 | 1.73 | 0.49 | 0.07 | 1.29 | 0.01 | 0.03 | 0.30 | 0.06 | 0.07 | 0.10 |
| 練馬区 | 10.3 | 9.6 | 45.50 | 1.89 | 0.48 | 0.04 | 1.22 | 0.01 | 0.03 | 0.25 | 0.07 | 0.08 | 0.11 |
| 足立区 | 10.5 | 10.6 | 46.74 | 1.84 | 0.50 | 0.06 | 1.28 | 0.01 | 0.02 | 0.31 | 0.06 | 0.08 | 0.07 |
| 葛飾区 | 10.0 | 10.5 | 46.52 | 1.86 | 0.50 | 0.06 | 1.27 | 0.01 | 0.02 | 0.27 | 0.06 | 0.08 | 0.08 |
| 江戸川区 | 11.0 | 10.8 | 45.09 | 1.93 | 0.50 | 0.07 | 1.27 | 0.01 | 0.02 | 0.26 | 0.06 | 0.07 | 0.09 |
| 八王子市 | 10.1 | 9.7 | 48.31 | 1.96 | 0.50 | 0.03 | 1.28 | 0.01 | 0.03 | 0.21 | 0.05 | 0.07 | 0.05 |
| 町田市 | 10.0 | 10.0 | 48.16 | 2.06 | 0.49 | 0.02 | 1.44 | 0.01 | 0.03 | 0.17 | 0.06 | 0.08 | 0.07 |
| 調布市 | 8.6 | 9.1 | 45.66 | 1.92 | 0.49 | 0.02 | 1.14 | 0.01 | 0.04 | 0.23 | 0.06 | 0.08 | 0.11 |
| 西東京市 | 9.1 | 9.2 | 46.90 | 2.00 | 0.49 | 0.03 | 1.15 | 0.01 | 0.03 | 0.20 | 0.06 | 0.08 | 0.10 |
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.833
Model: OLS Adj. R-squared: 0.711
Method: Least Squares F-statistic: 6.803
Date: Mon, 21 Jul 2025 Prob (F-statistic): 0.000472
Time: 06:53:14 Log-Likelihood: -14.148
No. Observations: 27 AIC: 52.30
Df Residuals: 15 BIC: 67.85
Df Model: 11
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const -5.405e-15 0.106 -5.12e-14 1.000 -0.225 0.225
x1 -0.7820 0.361 -2.165 0.047 -1.552 -0.012
x2 -0.3056 0.355 -0.860 0.403 -1.063 0.452
x3 0.0671 0.270 0.248 0.807 -0.509 0.643
x4 -0.0737 0.213 -0.346 0.734 -0.527 0.379
x5 0.2652 0.168 1.579 0.135 -0.093 0.623
x6 -0.0534 0.246 -0.217 0.831 -0.578 0.472
x7 -1.7650 0.293 -6.018 0.000 -2.390 -1.140
x8 -0.5147 0.379 -1.358 0.195 -1.322 0.293
x9 1.3916 0.348 3.994 0.001 0.649
AIで作った実写風映像で実写風の幼女が性的なことをしても児童ポルノに問われないという。
一方で実写の幼女の写真や映像の一部分をAIで自然に合成して裸にさせたり性的なことをさせるのは児童ポルノになるという。
https://www3.nhk.or.jp/lnews/tottori/20250114/4040019434.html
後者も実際に裸にさせられたり性的なことをさせられたりしているわけでないという点では前者の完全AIと同じだよ。
そうすると規制の論点は実在の幼女が性的なことをしているという内容で真実性を問わず十分な可能性で認識され得るものかと話に捉えられる。
もし実写風AIが作り出した幼女の像が特定の実在幼女の顔認証をパスするほどの客観性でその幼女と見紛うものになっていたらどうする?
その映像でもし性的なことをしていたら?それはもう前述の後者と同じ懸念点が成立する点で本質的に実写に対する部分AIと変わらないのではないか?
偶然一致していたとしてもそれは著作権の話で偶然に一致しているキャラが生まれても許される的なのと同じ論法が適用される?
ことは著作権より重大たりうる。
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA512 https://anond.hatelabo.jp/20250718171558# -----BEGIN PGP SIGNATURE----- iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaHoCwQAKCRBwMdsubs4+ SNDqAQDyVnnnzpRKOqIRvdO91q9FpLxKeY5gnoDc4wMXDC5t5gD/bIc+/20FztsS yyn9eVPz+HbOYH8Mfa7sKwY/CxKsdAs= =jEgz -----END PGP SIGNATURE-----
ポイント還元率で選ぶ人多いけどそういうのいいから純粋に使いやすいカードで見るとdカードが俺にはあっていた
もちろんゴールドにはしていない。年会費が無駄。最近はdポイント制度が改訂されてあまり魅力的ではないのだけど、特に気にしてはいない。それより使える環境が大事。
他のカードもあるけど
コード決済はどんどん自社カードに収斂させようとしているし機能が増えすぎて微妙だ。
KyashやRevolutへのルートもどんどん潰されてる。なので安定して使えるクレカは少なくなっている。
今までは都会住まいでSuicaを使ってましたが、春からは電車(路線?)が通っていない田舎に引っ越します。車の免許は取ったし格安中古車を買ったので問題ないのです。住む場所はもう決めていて比較的市街地なので商業施設へのアクセスは便利。でも駅がないから駅中心だった生活を変える必要があることに戸惑っている。都心にまでバスや高速使わないといけない以外、住むのに困らないってのはちょっとしたカルチャーショック。
いままではSuica中心だったからBicのSuicaカードだけは持っているんです。でもJR使わないし運悪くBicCameraがない地域なので持ち続けるメリット薄いなーって思います。
いちおうゆうちょと三井住友銀行は持っているけど、残念ながら三井住友が近隣にない。じゃーもうSBIなんかのネット銀行にして、クレカも通信会社のものにしようかなって思います。
どんなクレカ持ってますかね。やっぱり地域銀行のカードやdカード系ですかね。一応ゴールドは通りそうだけど(勤続年数ではじかれる?)旅行とか行かないのに持つ必要あるのかな?
いわゆるポイ活にはほど遠い。
還元率は軒並み1%台だけど、もっといいカードに替えたりする気はあまりない。楽天やLinePayがお得とは聞くが、基本的に期間限定のお得ポイント狙いで良い結果になることは少ないから。dポイントは使える場所が幅広いのとd払いとの相性がいいから、基本コンビニ支払で消費する。というかそれように貯めているようなもの。
尤も、docomoが好きというより楽天が嫌いなのでよほどのことがない限りは楽天カードマンにはならない。
ミライノカードは家賃やサブスクなどの、支払い漏れがあっては困る用にしてる。クレカ紛失のリスクを避けるために普段使いと固定費用は分けるべきだと思う。ポイント還元という側面もあるが、実際はSBI銀行(現NoeBank)を長く使っているからという面が強く、また現金還元という形はここくらい。
クレカが庶民のものになって久しい。便利ではあるけど高額なリボ払いへの勧誘が苛烈化しているのはどうも納得がいかない。それならば年額千~2千円程度を支払って便利な特典を多く受けられるようにしてほしい。特に明細の即時通知サービスとか、ポイント還元率増加とか、ユーザーが手動でカード利用の一時停止もできるようにならないかな。
子供の無断課金とか社会問題になってるのを、いちいちオペレーターが負担しないといけないのはよくないよね。
カードデザインにしても、表だろうが裏だろうがカード番号とセキュリティコードが一緒になってるの、意味ないんじゃない?そういう意味不明なことしないで欲しい。カード使う人は別にポイント目的ばっかりじゃない。現金を使わずに楽に管理できることを目的にする人だっている。
余談だけど、もう少しでドコモのサブブランド(仮)のahamoがでる。それに乗り換える予定だけど、そうするとキャリアメールが使えなくなってしまう。まったく困らないけど唯一ゆうちょダイレクトが使えなくなる点が問題。たぶんゆうちょを母艦にしなくなる人多そうだよね。だから水道とか一部の引き落としは今後LinePayにしようかと思う。
あえて圧縮VPNを使っていたので気にならないが、それと強制されるのは別問題。
SSLが著しく遅くなっている。
強いて言うならpingがやや遅い。
常時高速で使っても余る。
IIJ系列には低速3日制限があり引っかかる可能性が高かったが、常時高速なら何の問題もない。
エントリーパッケージ・ポイントサイト・キャンペーンの重複により、12ヶ月使ってmineoに戻ると実質1506円/月になる。
今のmineoの1631円/月より安い。
mineoには7GBあり、料金は日割り。
IIJmioは初月3GBしかなく、高速通信量も料金も日割り。
日割なのでいつMNPしてもMNP後は変わらないが、MNP前は高速通信をたっぷり使える。
よってなるべく遅くした方が良い。
一番良いのが月末だろう。
http://anond.hatelabo.jp/20151117174656
ブコメが興味深かったので。オススメしているしていないに関係なく、筆記具っぽいコメントをピックアップしてみました。ちゃんとコメントした人の意図通りの検索結果になるかは未確認。ボールペン、万年筆で分けようかと思ったけど面倒だったのでこれで完成ということで。ミスってたらごめんなさい。