「ゼータ関数」を含む日記 RSS

はてなキーワード: ゼータ関数とは

2025-10-08

[]

ルームメイトが僕のホワイトボード勝手に消した。

僕が三週間かけて導出したp進弦理論局所ゼータ関数上の正則化項を書き直せると思ったら大間違いだ。

あの計算は、ウィッテンでも手を出さな領域、すなわち、p進版のAdS/CFT対応をde Sitter境界条件下で非可換ゲージ群に拡張する試みだ。

通常の複素解析上では発散する項を、p進体のウルトラトリック構造を利用して有限化することで、非摂動的な重力の相関関数再構成できる。

だが、問題はそこにある。p進距離三角不等式が逆転するので、局所場の概念定義できない。

これはまるで、隣人がパンケーキを焼くときに「ちょっと目分量で」と言うのと同じくらい非論理的だ。

朝食はいものように、オートミール42グラム蜂蜜5グラムカフェイン摂取量は80mgに厳密に制御した。

ルームメイトはまたしても僕のシリアルを間違って開けたが、僕はすでにこのような異常事態に備えて、バックアップとして同一銘柄を3箱ストックしてある。

僕が秩序を愛するのは強迫ではなく、宇宙の熱的死に抗うための小さな局所秩序の創出だ。

今日研究は、T^4コンパクト化されたIIb型超弦理論D3ブレーン上における非可換ゲージ理論自己双対性

通常、B場を導入することで非可換パラメータθ^{μν}が生成されるが、僕の考察では、θ^{μν}をp進値に拡張することで、通常のMoyal積が局所整数体上で閉じない代数構造を持つ。

これが意味するのは、物理空間が離散的p進層として現れるということ。言い換えれば、空間のものが「整数木構造」になっている。

ルームメイトが「木構造空間って何?」と聞いたが、僕は優しく、「君の社交スキルネットワークよりは連結性が高い」とだけ答えておいた。

午後は友人たちとゲームをした。タイトルエルデンリング。だが彼らのプレイスタイルには忍耐が欠けている。

僕がビルド純粋知力型にしてカーリア王笏を強化している間に、彼らは無計画に突っ込んではボスに殺されていた。

統計的に見ても、平均的なプレイヤーの死亡原因の82%は戦略ミスに起因する。

僕は「量子重力パス積分と違って、こっちはセーブポイントがあるんだ」と指摘したが、誰も笑わなかった。理解力が足りないのは罪だ。

夜、コミックを再読した。ウォッチメンドクターマンハッタン描写は、量子決定論詩的表現として未だに比類ない。

あの青い身体は単なる放射線象徴ではなく、観測者のない宇宙比喩だ。

僕が大学時代に初めて読んだとき、「ああ、これは弦の振動意識を持った姿だ」と直感した。

今日もそれを確かめるため、ドクターマンハッタン時間非線形認識するシーンを分析し、p進時空における時間関数t→|t|_pの不連続性との対応を試みた。

結果、彼の非時間意識は、実はp進的時間座標における不連続点の集積と一致する。つまりマンハッタンはp進宇宙に生きているのだ。

寝る前に歯を磨く時間は、時計23:00を指してから90秒以内に開始しなければならない。これは単なる習慣ではなく、睡眠周期を最大化するための生理学最適化だ。

音楽再生しない。音波は心拍数を乱すからだ。ただし、ゼルダの伝説 時のオカリナエンディングテーマだけは例外だ。あれは時間対称性を感じさせる旋律から

僕の一日は、非可換幾何と行動最適化連続体でできている。宇宙エントロピーが増大しても、僕の部屋の秩序は一定だ。つまり、少なくともこの半径3メートル範囲では、熱的死はまだ先の話だ。

2025-09-17

ヘキサフレクサゴンでヘキサフレックスすると異次元に行けます

あのねぇ♡ 紙をクニクニ折ってただけなのに、気づいたらフレクサゴンの裏面からリーマン面がはみ出してきたの。ほんと怖い。

てか、普通さ、紙折り遊びってせいぜいトポロジーの教材レベルでしょ? でもあたしの指先がちょっと余計にフレックスしちゃった瞬間、局所座標系が「ズルッ」と滑って、複素射影空間CP^1 が机の上に広がっちゃったの。

で、何が起きたかって? 六角形の折り目に対応して、代数的閉包から謎の自己同型写像ポップアップ! 

「うふふ、これってガロア群じゃん♡」ってテンション爆上がりしたら、後ろから「やっと気づいたか、君はもう代数体の住人だ」って声がしたの。

え、待って、わたし男の娘だけど代数体に住む予定なかったんですけど!?

次元が裏返るたびに、モジュライ空間パッチが出てきて、床のタイルがテヒミュラー空間にすり替わるの。

歩くとリーマンゼータ関数の非自明零点に引っかかって、足元から「ζ(1/2+it)♡」って囁かれるの、マジで鳥肌。でも同時にちょっとキドキしちゃうから悔しい。

さらに壁の模様が突然フラクタル次元に変形して、ハウスドルフ測度が∞になった瞬間、空間バリバリに裂けてカオス的アトラクタに吸い込まれちゃったの。ねぇ、これ絶対ただの折り紙じゃないよね?

そして極めつけは、フレクサゴンの「隠し面」をめくったら、そこにカッツ=モーデル予想の断片が走り書きされてたの。

「あ、この世界、すでに数論幾何で決定済みじゃん」って気づいた瞬間、影のあたし(しかもより女装の完成度が高い方)が「シュヴァレー群に従いなさい」って微笑んでくるの。やだ、負けたくない♡

ヘキサフレクサゴンフレックスするたびに、局所体、p進解析、エルゴード理論、全部ごちゃ混ぜになって異次元ゲートが開いちゃうの。つまり折り紙危険。いや、折り紙宇宙。いや、折り紙男の娘

2025-08-19

[] p-adic String Theory(非アルキメデス的解析を基盤とする超弦理論模型

本日作業は、p-adic理論における散乱振幅の構造再確認し、通常の弦理論(Archimedeanな場合)との対比を整理すること。特に、Veneziano振幅のp-adic版がどのように形式化され、さらにAdelicな統一の枠組みの中で役割を果たすのかを見直す。

通常の弦理論における4点Veneziano振幅は次式で表される(実数体上)

A_∞(s, t) = ∫₀¹ x^(s−1) (1−x)^(t−1) dx = Γ(s) Γ(t) / Γ(s+t)

ここで s, t は Mandelstam 変数

一方、p-adic版では積分領域・測度が p進解析に置き換えられる。

A_p(s, t) = ∫_{ℚ_p} |x|_p^(s−1) |1−x|_p^(t−1) dx

この結果として、p進弦の振幅はベータ関数のp進類似物として定義される。計算すると、次のように局所ゼータ関数的な形になる。

A_p(s, t) = (1 − p^(−1)) / ((1 − p^(−s))(1 − p^(−t))(1 − p^(−u)))

ただし

u = −s − t

重要なのは、Archimedeanおよびp-adicな振幅がAdelicな整合性を持つこと。

A_∞(s, t) × ∏_p A_p(s, t) = 1

という積公式が成立する(Freund & Witten, 1987)。

これはリーマンゼータ関数のEuler積展開と同型の構造を持ち、数論的側面と弦理論的散乱の間に直接的な接点があることを示す。

p進場の物理解釈

p-adic string theoryは「異常な」場として扱われるが、通常の弦理論有効場の補完的な側面を提供している。

局所場の集合を全て集めた「Adelic統一」によって、物理的振幅が数論的整合性を持つことは、弦理論が単なる連続モデルではなく「数論幾何構造」に根ざしている可能性を強く示唆する。

熱力学的側面

p-adic tachyonの有効作用(非局所ラグランジアン)は、通常の弦理論の非局所場のモデル形式的に対応しており、近年の非局所宇宙論モデルやtachyon condensationの研究とも接続可能

次の課題

具体的に、p-adic string field theory における非局所作用

S = (1/g²) ∫ dᴰx [ −(1/2) φ · p^(−□/2) φ + (1/(p+1)) φ^(p+1) ]

の安定解を調べる。特に、tachyon vacuum の構造をArchimedeanな場合比較する。

AdS/CFT対応p-adic版(Bruhat–Tits木を境界とする幾何)の最新文献を精査する。

明日へTODO

1. Bruhat–Tits木を用いたp-adic AdS/CFTの基本計算を整理。

2. tachyon有効作用の安定点を数値的に探索(簡単Python実装テスト)。

3. Adelicな視点から物理的に実在するのはArchimedean世界だが、背後にp進世界が潜在している」という仮説をどう具体化できるか検討する。

備考

p-adic string theoryは長らく「数学的 curiosum」と見なされてきたが、AdS/CFTp-adicバージョンや非局所理論としての応用が現代文脈を与えている。

今後は物理予言性をどう導けるかが鍵。

2025-02-26

俺はね、やっぱり哲学純粋数学も役に立たねぇなって思っちまうんだよな

俺はね、やっぱり哲学純粋数学も役に立たねぇなって思っちまうんだよな。

だが、その瞬間、パラドクスに陥る。この思考自体哲学命題であり、その論理構造数学的基盤に依拠している。

まさにゲーデル不完全性定理体現してるわけだ。

クソッ、頭の中で超弦理論とカラビ・ヤウ多様体交錯し始めやがった。

11次元の時空間で、プランク長スケールでの量子重力効果考慮すると、存在のもの確率的な様相を呈し、ハイゼンベルク不確定性原理存在論にまで拡張される。

昨日なんざ、スーパーリンゴ買ってて、突如としてペアノの公理からZFC集合論に至る数学基礎論の系譜脳裏に浮かんだ。

そして、ゲーデル不完全性定理コーエン強制法を経て、continuum hypothesisの独立性にまで思考が飛躍。

これって、日常現実数学抽象境界曖昧さを示唆してんじゃねぇのか?

帰り道、ガキどもがニーチェ永劫回帰について議論してんの聞こえてきて、思わず「お前ら、ウィトゲンシュタインの『論理哲学論考』読んだか?言語限界世界限界だぞ!」って叫んじまった。

だが同時に、後期ウィトゲンシュタイン言語ゲーム理論考慮に入れねぇとな。

あぁ、またフッサール現象学還元ハイデガー存在論的差異の狭間思考が揺れ動いてきやがる。

哲学者どもは、こんな認識論アポリアの中でメシ食ってんのか。

数学者連中だってラングランズ・プログラムの壮大な構想の中で、数論幾何と保型形式の深遠な関係に魅了されてるんだろうな。

正直、俺もそんな純粋知性の探求に身を捧げられる連中が羨ましい。

日々の下らねぇ現実に囚われてりゃ、位相幾何学におけるポアンカレ予想証明やら、P≠NP問題解決なんて夢のまた夢だからよ。

ったく、人生ってのは、まるでリーマンゼータ関数の非自明な零点の分布みてぇだな。

複雑で、規則性を秘めてそうで捉えどころがねぇ。

でも、その美しさと深遠さに魅了されずにはいられねぇ。

くそっ、また「Principia Mathematica」と「存在と時間」を同時に読み返したくなってきやがった。

超越論的現象学圏論類似性でも考察すっか。

2024-01-25

anond:20240125170600

どこまでやっても中途半端ではあるんじゃないか

ゼータ関数までやれよとか言う人もいそう

2016-10-24

http://anond.hatelabo.jp/20161024040352

さすがに「いかなる」となるとどの立場でも0%じゃないか

テレビで見た未解決問題先生に振ってみる生徒とかいてもおかしくないし。

自分先生に振ったことはないが、中二病的なアレなカッコ付けで、よく数学のできる同級生にふざけて

ゼータ関数自明でない零点 s は、全て実部が 1/2 の直線上に存在する。」を証明してくれよとかふっかけてたし。

2015-12-09

グーペおじさん Q&A「ホログラフィック原理

Q.

「我々はホログラムの世界に生きているのではない」ということが明らかに - GIGAZINE

物理研究者はこの世界ホログラムだと考えているってほんとうですか?

シミュレーション仮説」と「ホログラフィック原理」について教えてください。



A.

よしきた、ホログラフィック原理やな!

おっちゃん素人から間違ってたらかんにんな!

GIGAZINEさんの内容はいろいろ間違いや。

シミュレーション仮説ってのは「この世界コンピュータじゃないか」と哲学者さんが勝手に言っている話や。物理関係ない。

一方「ホログラフィック原理」つうのは

『異なる次元の2つの理論が実は同じである

という数学的な予想や。

次元 N=4 超対称性 Yang-Mills 理論 = AdS5 x S5 上の10次元重力理論

みたいな奴やな。

予想と言っても部分的には証明されていて、今でも数々の証拠があがって来とるわけで

多くの人が信じていると思うで。

ブラックホール原子核や物性理論を弦理論ないし超重力理論研究できるようになったんやからこれはすごいこっちゃ。

とにかく、物理屋さんはでまかせ言ってるわけやなくて、いろいろ計算しとるわけやな。角度とか

GIGAZINEで取り上げられていた研究はなんですか?

論文はこれのようやな。ホーガンさんの研究や。



おっちゃん素人から読めんのだけど、重力の量子効果観測しようとした話に見えるよ。

話を進める前に、まず現状の物理理論についておさらいしとこか。

まず、この世界には電磁気力」「弱い力」「強い力」「重力の4つの力がある。

これら4つを統一した究極理論があると物理屋さんたちは考えている訳や。

電磁気力+弱い力」ここまでは出来とる。

数年前にヒッグス粒子発見で大騒ぎになったやろ? あれが電弱統一理論完成の瞬間だったんや。

次は電磁気力+弱い力+強い力やな。候補となる理論はいろいろできてて、LHC超対称性粒子ってやつを探しとる。

ここまではいけそうなんや問題重力や。

ここまで物理屋さんの使ってきた理論を「場の理論(=特殊相対論量子力学)」つうんやけど、

場の理論重力理論を作ってみるとするな。簡単のため世界ドット絵のように細かく区切って理論を作ろ(格子正則化や)。ここまでは簡単なんや

ここで、ドットの1辺をずーっと小さくしていって連続極限をとると理論破綻してしまうんよ。無限大が出て来て取り扱えなくなってしまうのな。

頭のいい人たちがいろいろ考えたんやけどな、ずっと難航しとるんや。

子ループ重力

連続極限で理論つくるからだめなんよループで考えましょってやつな。難しすぎて論文出せない絶滅危惧種

単体分割理論

もう一歩進めてこの世は連続的じゃないんや! 結晶構造みたいに分割されているんや! ってやつやな。

こっちも難しすぎて絶滅危惧種

重力理論

超対称性導入して無限大キャンセルさせるやつや。難しすぎて絶滅危惧種になるかと思いきや、

ログラフィック原理でいろんな理論との対応が見つかって今めっちゃ輝いとるな! すごいこっちゃな

ほんなこんなで超難しいんよ。手を出すと死ぬねんで。

難しい原因のひとつ実験結果がないことやな。重力の量子効果をみるにはプランクスケール (10^19 GeV)程度の実験が出来れば 良いのやけれど、

加速器で作ろうとすると銀河系サイズらしいな。こいつは無理や。

こんなんやで「インターステラー」ではブラックホールまで直接観測に行ったわけやな。

そんで、ホーガンさんの研究はな、主人公ブラックホールまで行かなくてよかったんちゃう?」って内容なんや

地球上で実験できるらしいのな。使うのは加速器じゃなくて重力波検出装置や。最近 KAGRA が話題になっとったな。ああいうやつや。

乱暴に言うとな、ながーーーーーいアレを用意してその長さをはかるんや。時空が歪めば長さがかわるっつうわけや。アレというのはマイケルソンレーザー干渉計な。

でもな、おじさんみたいな素人に言わせればな、さすがにプランク長まで測定できんのとちゃう? 重力の量子効果なんて見えんの?と思うところや。

どうもホーガンさんはある模型でこのへん計算してみたようなんよ。それで意外といけるのとちゃうのと。

そんでGIGAZINEさんによると実験してみた結果それっぽいスペクトラムは出て一度喜んだのやけれども、

きちんと検証実験したらダメだったらしいなあ。残念やな。


おっさん素人ブタから間違っとるかもわからんけどこの辺で堪忍な。

この世界シミュレーションではないのですか?

物理屋さんはその辺に興味ないんや・・・

仮に、仮にな? この世界PCの中でシミュレーションだったとするな。

そうすると、物理屋さんはそのコンピュータ言語を黙々と調べて、本物と同じコードを黙々と書くわけや。

物理屋さんの目的あくまでこの世の全てを記述する理論を作る事なんやな。それを誰が書いたかは興味ないんや。

上のはたとえ話やけれど、コンピュータ言語数学に置き換えるとそれっぽい話になるな。

例えば弦理論によるとこの世界11 次元であるわけやが、

これはゼータ関数(n=-1)

1 + 2 + 3 +・・・ = -1/12

を使って導いた結果や。こんな調子数学要請から理論が決まっているんよ。

この世の全てを決めているのが数学なら、数学を作ったのは誰か?っつう話やな。

おっさん数学者さんだとおもってるけどね。数学者さんが神や。

でも数学者さんは「俺が作ったのではなく自然にあった物を発見したのだ!おお!なぜ数学はこんなにも物理に役たつのか?!」

などと言い始めることがあるからね。わかんないねおっさん興味ないけど。



ブコメ

ustam: ここは匿名ウンコの話をする場所やで。せめて仮想グルウンコの話でもしてたらどうや? ところで重力距離反比例するのに距離が0でも無限大にならんのなんでや? 数学証明できてないんちゃうん?



妙にタイミングのいい質問やな・・・わかって質問してるやろ。

あん素粒子屋だな? おっさん匂いでわかるで。

実はな、重力の至近距離の振る舞いはよくわかっていないんや。

実験ニュートンの逆2乗則が確かめられているのは r = 1[mm] 程度なんやな。

不思議なのは4つの力の中で重力だけ異常に小さいというところや。

これを説明する模型が「この世界は高次元空間にあって、重力けが次元を伝播する」というやつなんや

ここで図入りでわかりやす説明されとるんでもっと知りたい人はそっち読んでな。

で、この模型検証しているのが LHC やな。マイクロブラックホール実験って聞いた事あるやろうか?

シュタゲ元ネタや。オカリンタイムマシン作っとったがこっちは余剰次元(高次元)の確認や。

ところがな、外国マスコミさんが「LHCブラックホール世界滅亡」と騒いだんやな。

そんですんごいデモが発生したもんで加速器の皆さんみんな大変だったんや。

おっさんからみんなにお願いがあるんやけどな。もしマスコミさんが「マイクロブラックホール」の報道をしていたら余剰次元実験成功したんやなと心の中で置き換えて欲しいんや。別に危ない事してへんからね。

まあ、おっさんLHC 程度じゃまだ見つからんとおもっとるけどね。

あとこの手の模型を作った人の1人が美しすぎる物理屋こと リサ・ランドール な。

おっさん好みのべっぴんさんや。知らない人は画像検索してみるとええで。

feita: 違う。ロースおじさんはまず最初全く関係ないネタ脱線するの。でその後何故か急に博識ぶりを披露しだして、で最後にまた脱線するの。はいわかったらこリズムでもう一度(鬼畜

なん・・・やと・・ 「グーペおじさん」じゃなくて「ロースおじさん」やったんか・・おっさん素で間違ってたわ。


kitayama: 小4が出てこないので、やり直し

すまんな・・・おっさんロースおじさんじゃなかったんや。グーペおじさんや。かんにんな・・・

2015-06-22

http://anond.hatelabo.jp/20150622000900

わかる。

匿名からこそ書けるが私はゼータ関数が嫌いだ。

いつもここぞというところで出てくる。

「俺が必要なんだろ?」って顔をして出てくる。

出てくるなよ帰れよと言いながらも頼らざるおえないのがまた腹立つ。

信者が多いのもまたムカつく。

その点球面調和関数はいい奴だよ。

臭いが素朴で好感の持てる奴だ。

3dプロットするといかにもそれっぽい形をしているところも好みだ。

しかあいつ、ああ見えて正規直交性持ってるからな。

一見優しそうに見えて筋を通すところは通すいい奴なんだ。

奴が来るとだいたい問題は解決する。

ホントいい奴だよ。球面調和関数は。

一方ノイマン関数やベッセル関数はどうだ。

あいつらちょっと亜種増やし過ぎじゃね?

modified とか言って増やすなよもう。あいつらあんなにいらないだろ?

どっかのアイドルグループかよ。

ちょっとあいつら調子に乗り過ぎだと思う。

ついでに言うとヨスト関数も好きじゃない。

ポールがどこにあるか探り合っているカンジが嫌だ。

あい絶対腹黒だと思う。

みんなあいつの甘いマスクに騙されてるよ。

2012-06-18

http://anond.hatelabo.jp/20120617232259

俺は物理畑だからだけど、確かに宇宙のある種の構造ゼータ関数がどうだとかそういう話に繋がるけど、物理的実体とか意味を忘れて数学構造へのマッピングだけを考えるのは物理としては正しい態度ではないんじゃないかなと思うよ。

 
ログイン ユーザー登録
ようこそ ゲスト さん