はてなキーワード: 位相空間とは
大学以降の内容の教科書に相当する本見ると何年生向けとか書いてあることあるけど博士習得後何年目向けみたいに書いてるのってなくない?
単純に博士以降の内容を扱ってるので単行本の形式になってるのがないからなのか、博士以降だと理解の進度が人によってバラバラだから何年目とか指定しても意味ないからなのか?でもそれ言ったら学部生の時点で進度は個人でも大学でも全然違うじゃんね
たとえば位相空間論は2年生で学びますって建前になっててもどれだけ深くやるかはバラバラでかたや商位相までは講義で扱われなくて知らないとかあるだろうし集合論でも整列定理までやるかコーエンの強制法までやるかで全然進度違うといえるし
dorawiiより
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA512 https://anond.hatelabo.jp/20251112201926# -----BEGIN PGP SIGNATURE----- iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaRWWdQAKCRBwMdsubs4+ SHqnAQCOJBO2lX6Q2cIPmWuCZ1C29ISBFPkElqSy5znFLqFgJQD/Z+IHfIt/JfYQ mCSj6Xfe2KW9vXmj/zwN3b2hHcVEiwg= =og1M -----END PGP SIGNATURE-----
僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。
コーヒーは精密に計量した7.4グラム、抽出温度は92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。
寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。
友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論の議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピー増である。
今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリの対象として再解釈することに時間を費やした。
物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーのラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。
局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論的双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。
ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性が位相的モジュライ不変量として現れる点だ。
もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子が物理的対称性の生成子へとマップされる、といった具合に理解するとよいだろう。
ただし僕の考察は抽象化の階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。
僕は朝からこのアイデアの微分的安定性を調べ、スペクトル系列の収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。
結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合な境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。
日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。
買い物リストは確率論的に最適化していて、食品の消費速度をマルコフ連鎖でモデル化している。
ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源を節約するための合理的なエンジニアリングに他ならない。
インタラクティブなエンタメについてだが、今日触れたのはある対戦的収集型カードの設計論と最新のプレイメタに関する分析だ。
カードの設計を単なる数値バランスの問題と見做すのは幼稚で、むしろそれは情報理論とゲーム理論が交差する点に位置する。
ドロー確率、リソース曲線、期待値の収束速度、そして心理的スケーリング(プレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境は健全な競技循環を失う。
友人たちが議論していた最新の戦術は確かに効率的だが、それは相手の期待値推定器を奇襲する局所的最適解に過ぎない。
長期的な環境を支えるには、デッキ構築の自由度とメタの多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。
一方、漫画を巡る議論では、物語構造と登場人物の情報エントロピーの関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語のテンポと読者の注意持続時間を定量化できる。
これは単なる趣味的な評論ではなく、創作の効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品を合理的に解析することは否定されるべきではない。
夜も更け、僕は今日の計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。
知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。
今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。
眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。
日中は実験室的な刺激は少なかったが、思考の連続性を保つために自分なりの儀式をいくつかこなした。
起床直後に室温を0.5度単位で確認し(許容範囲は20.0±0.5℃)、その後コーヒーを淹れる前にキッチンの振動スペクトルをスマートフォンで3回測定して平均を取るというのは、たぶん普通の人から見れば過剰だろう。
だが、振動の微妙な変動は頭の中でのテンポを崩す。つまり僕の「集中可能領域」は外界のノイズに対して一種の位相同調を要求するのだ。
ルームメイトはその儀式を奇癖と呼ぶが、彼は観測手順を厳密に守ることがどれほど実務効率を上げるか理解していない。
隣人はその一部を見て、冗談めかして「君はコーヒーにフレームを当ててるの?」と訊いた。
風邪の初期症状かと思われる彼の声色を僕は瞬時に周波数ドメインで解析し、4つの帯域での振幅比から一貫して風邪寄りだと判定した。
友人たちはこの種の即断をいつも笑うが、逆に言えば僕の世界は検証可能で再現可能な思考で出来ているので、笑いもまた統計的に期待値で語るべきだ。
午前は論文の読み返しに費やした。超弦理論の現代的なアプローチは、もはや単なる量子場とリーマン幾何の掛け合わせではなく、導来代数幾何、モーダルなホモトピー型理論、そしてコヒーシブなホモトピー理論のような高次の圏論的道具を用いることで新たな言語を得つつある。
これらの道具は直感的に言えば空間と物理量の振る舞いを、同値類と高次の同型で記述するための言語だ。
具体的には、ブランデッドされたDブレーンのモジュライ空間を導来圏やパーフェクト複体として扱い、さらに場の有る種の位相的・代数的変形が同値関係として圏的に表現されると、従来の場の理論的観測量が新しい不変量へと昇格する(この観点は鏡映対称性の最近のワークショップでも多く取り上げられていた)。
こうした動きは、数学側の最新手法が物理側の問題解像度を上げている好例だ。
午後には、僕が個人的に気に入っている超抽象的な思考実験をやった。位相空間の代わりにモーダルホモトピー型理論の型族をステートとして扱い、観測者の信念更新を型の変形(モナド的な操作)としてモデル化する。
つまり観測は単なる測定ではなく、型の圧縮と展開であり、観測履歴は圏論的に可逆ではないモノイド作用として蓄積される。
これを超弦理論の世界に持ち込むと、コンパクト化の自由度(カラビヤウ多様体の複素構造モジュライ)に対応する型のファミリーが、ある種の証明圏として振る舞い、復号不能な位相的変換がスワンプランド的制約になる可能性が出てくる。
スワンプランド・プログラムは、実効場の理論が量子重力に埋め込めるかどうかを判定する一連の主張であり、位相的・幾何的条件が物理的に厳しい制限を課すという見立てはここでも意味を持つ。
夕方、隣人が最近の観測結果について話題にしたので、僕は即座に「もし時空が非可換的であるならば、座標関数の交換子がプランクスケールでの有意な寄与をもたらし、その結果として宇宙加速の時間依存性に微妙な変化が現れるはずだ。DESIのデータで示唆された減速の傾向は、そのようなモデルの一つと整合する」と言ってしまった。
隣人は「え、ホント?」と目を丸くしたが、僕は論文の推論と予測可能な実験的検証手順(例えば位相干渉の複雑性を用いた観測)について簡潔に説明した。
これは新しいプレプリント群や一般向け記事でも取り上げられているテーマで、もし妥当ならば観測と理論の接続が初めて実際のデータで示唆されるかもしれない。
昼食は厳密にカロリーと糖質を計算し、その後で15分のパルス型瞑想を行う。瞑想は気分転換ではなく、思考のメタデータをリセットするための有限時間プロセスであり、呼吸のリズムをフーリエ分解して高調波成分を抑えることで瞬間集中力のフロアを上げる。
ルームメイトはこれを「大げさ」と言うが、彼は時間周波数解析の理論が日常生活にどう適用されるか想像できていない。
午後のルーティンは必ず、机上の文献を3段階でレビューする: まず抽象(定義と補題に注目)、次に変形(導来的操作や圏論的同値を追う)、最後に物理的帰結(スペクトルや散乱振幅への影響を推定)。
この三段階は僕にとって触媒のようなもので、日々の思考を整えるための外骨格だ。
夜は少し趣味の時間を取った。ゲームについては、最近のメタの変化を注意深く観察している。
具体的には、あるカードゲーム(TCG)の構築環境では統計的メタが明確に収束しており、ランダム性の寄与が低減した現在、最適戦略は確率分布の微小な歪みを利用する微分的最適化が主流になっている。
これは実際のトーナメントのデッキリストやカードプールの変遷から定量的に読み取れる。
最後に今日の哲学的なメモ。理論物理学者の仕事は、しばしば言語を発明することに帰着する。
僕が関心を持つのは、その言語がどれだけ少ない公理から多くの現象を統一的に説明できるか、そしてその言語が実験可能性とどの程度接続できるかだ。
導来的手法やホモトピー的言語は数学的な美しさを与えるが、僕は常に実験への戻り道を忘れない。
理論が美しくとも、もし検証手順が存在しないならば、それはただの魅力的な物語にすぎない。
隣人の驚き、ルームメイトの無頓着、友人たちの喧嘩腰な議論は、僕にとっては物理的現実の簡易的プロキシであり、そこから生まれる摩擦が新しい問いを生む。
さて、20:00を過ぎた。夜のルーティンとして、机の上の本を2冊半ページずつ読む(半ページは僕の集中サイクルを壊さないためのトリックだ)
あと、明日の午前に行う計算のためにノートに数個の仮定を書き込み、実行可能性を確認する。
ルームメイトは今夜も何か映画を流すだろうが、僕は既にヘッドホンを用意してある。
ヘッドホンのインピーダンス特性を毎回チェックするのは習慣だ。こうして日が終わる前に最低限の秩序を外界に押し付けておくこと、それが僕の安定性の根幹である。
以上。明日は午前に小さな計算実験を一つ走らせる予定だ。結果が出たら、その数値がどの程度「美的な単純さ」と折り合うかを眺めるのが楽しみである。
僕は今夜、ルームメイトがリビングで実験的にベーコンを低温調理している匂いを鼻孔の厳密な位置で嗅ぎ分けながらメモ帳を開いた。
朝は6時17分に目覚ましを止め(そのミリ秒単位の遅延は許容されない)、6時18分にコーヒーの比率を変える習慣を行い、靴下は左から右へ、座席は常にソファの北東端(座る位置は位相対称性を破らない)である。
食事は火曜日のパスタの残り物は三等分して水曜と木曜の朝食に回す。洗濯は必ず偶数週の水曜に行い、洗剤は0.8倍希釈、脱水は中速、干す向きは北向き。
ルームメイトがドアに爪痕をつけたら即座にログを取り、隣人が郵便物を誤って取った場合は「郵便誤配報告フォーム」を三回に分けて提出する。
こうした儀礼を守ることで僕の内的位相空間が安定するのだと論理的に考えている。
今日の思考の核は超弦理論と量子情報の交差点についての、かなり尖った自己流の定式化にある。
まず、僕は物理的直感を避けて抽象数学で事象を語る。弦理論の摂動系列を有限厚さの∞-圏としてモデル化し、ブレーンを対象、開弦状態をモノイド的なホモトピー演算子として扱う。
局所座標の代わりにファクタリゼーション代数を使い、スパイダー図式を経て得られる交叉相互作用を高次ホモトピー群のコハート化として再解釈することを提案する。
ER=EPRについては、古典的なワームホール=絡み合いという語り方を離れて、僕はエントロピー・双対モジュールの同値性という言葉で捉えている。
つまり、二つのエントロピックモジュールの被覆圏と、それらに対応する重ね合わせのコボルディズム(圏論的な結合双対)を同一視することでER=EPRを圏論的に定式化できるのではないかと考えている。
これを超弦理論に接合するには、AdS/CFT 的なホログラフィック双対の場で、境界側の張力的演算子族が内部のブレーンカテゴリ(例えばフカヤカテゴリやコヒーレント層の導来圏)に対応するという見方を取り入れる。
すると、エントロピー双対モジュールの同値性は、境界とバルクの間で起こる圏の再同型化として現れ、ER=EPRは本質的に圏的ホログラフィーの一命題になる。
ここで僕が提案する小さな拡張は、量子誤り訂正符号のコード代数を∞-圏の射として扱い、その可換性条件がワームホールのコボルディズムの可逆性と一致するというものだ。
これにより、エントロピーの再構成操作がブレーン間のファンクターとして自然に理解でき、局所性の回復を説明する新しい枠組みが得られると僕は思う(これは僕の勝手な定式化で、厳密性は今後の証明を待つ)。
今日はそのメモを、黒板に書く代わりにルームメイトの背中越しにノートに書き留めた。
ところで、僕は靴の磨き方にも数学的基準を設けている(円周率の小数を用いた磨き順列を使っている)。
出かける前のチェックリストはトポロジー的順番、たとえば鍵→財布→スマホ→ペンという順序は位相連結成分を最小化するから合理的だ、と説明すると友人たちは顔をしかめるが、これを守ると予測可能性が上がる。
今夜はRPG系ではELDEN RINGのビルド論とRTAコミュニティのメタ的動向を気にしていて、この作品が2022年にFromSoftwareからリリースされ、多くのビルド最適化やメタが確立されていることは周知の事実だ(初リリースは2022年2月25日)。
また、このIPは映画化プロジェクトが進行中で、A24が関与しているという報(映画化のニュース)が最近出ているから、今後のトランスメディア展開も注視している。
僕はソウルライクのボス設計とドロップ率調整をゲームデザインの位相安定化とは呼ばないが、RTA勢のタイム削り技術や周回遺伝(NG+)の最適手順に対して強い敬意を持っている。
ファンタジーRPGの装備付け(メタ)に関しては、装備のシナジー、ステータス閾値、クラフト素材の経済学的価値を語るのが好きで、例えば「その装備のクリティカル閾値を満たすために残すステータスポイントは1だが、その1が戦闘効率を%で見るとX%を生む」というような微分的解析を行う。
FFシリーズについては、Final Fantasy XVIがPS5向けに2023年6月に、続いてPC版が2024年9月にリリースされ、さらに各プラットフォーム向けのロールアウトが段階的に行われたことなど実務的事実を押さえている(PCリリースは2024年9月17日)。
僕はこのシリーズの音楽的モチーフの再利用やエンカウンター設計の比較研究をしており、特に戦闘ループの短周期化とプレイヤー感情の連続性維持について言及するのが好きだ。
コミック方面では、最近の大きな業界動向、例えばマーベルとDCの枠を超えたクロスオーバーが企画されるなど(Deadpool×Batmanの一連の展開が話題になっている)、出版社間でのIPコラボが再び活発化している点をチェックしている。
これらはコレクター需要と市場流動性に直接影響するため、収集と保存に関する経済的最適化問題として興味深い。
今日、隣人が新しいジャンプ作品の話題を振ってきたので僕は即座に最新章のリリーススケジュールを確認し、One Pieceの次章の予定についても把握している(最新チャプターの公開予定など、週刊連載のスケジュール情報は定期的に確認している)。
例えば「午後9時に彼らがカップ麺を食べる確率は、僕の観察では0.83だ。ゆえに僕は9時前に冷蔵庫の位置を変えるべきだ」という具合だ。
結語めいたものを言うならば、日常のルーティンと高度に抽象化された理論は相反するものではなく、むしろ同じ認知的圏の異なる射影である。
だから僕は今日もルームメイトの忍耐を試す微細な仕様変更(例えばリモコンの向きを30度回す)を行い、その反応をデータ化している。
さて、20時30分だ。これでノートを閉じ、決まった手順で歯を磨き、眠りの準備に入る。明日の朝のアジェンダは既に分解されているから、心配は要らない、と自分に言い聞かせてから寝るのが僕のやり方だ。
僕は昨日、午前6時17分に目覚めた。
目覚ましは2種類、アナログ秒針音と周波数の微妙に異なる合成トーンを重ねたものを使う。
起床後の15分間は「視覚のデチューン」ルーチンとして照明を極端に低くし、網膜の適応曲線を意図的に遅延させることで認知の鮮鋭化を増幅する。
朝食は厳密にタンパク質比0.42、炭水化物比0.29、脂質比0.29を狙ったオートミール+卵白+ギリシャヨーグルトで、計量は0.1g単位。コーヒーはブリュワー温度を93.2℃に保つ。
僕の習慣は決して儀式ではなく、情報エントロピーを最小化して日常的なノイズを排するための有限状態機械だと説明する。
ルームメイトが朝から実験用ドライバーでガタガタやっているので、僕は中断せずに黒板の前に立ち、昨日考えていた超弦理論のある断片をノートに落とす作業をした。
今回は徹底的に抽象化した視座から入る。従来の超弦理論的場の位相空間を「1-対象の∞-圏」と見なし、そのモノイド圏的作用を導くことで、従来のモジュライ空間の位相不変量がホモトピー圏論のスペクトル的コホモロジーに帰着するという仮説を立てた。
より具体的には、ラングランズ対応の圏論的アナロジーを用いて、ゲージ群の表現環が導くモチーフ(motive)の圏と、弦の世界面上のファイバー付き代数的スタックの圏とを「導来圏の間の高次同値(a weak equivalence in the (∞,2)-categorical sense)」で結びつける試みだ。
ここで新奇なのは、通常のスペクトル系列ではなく「階層的スペクトル列(a nested spectral sequence indexed by ordinal-type filtrations beyond ω)」を導入して、閉じた遷移の非可換共鳴が量子補正式にどう寄与するかを解析する点である。
ウィッテンでも一瞬眉をひそめるだろうが、それは彼の専門領域を超えた命題の述語論的再編成が含まれているためだ(注:単なる挑発ではなく、証明可能性のための新たな可換図式を準備している)。
昼過ぎ、僕は隣人とほんの短いやり取りをした。彼女は僕のキッチンを通るたびに植物の世話に関する助言を求めるが、僕は葉緑体の光合成効率を説明する際、ついヘテロトロフ的比喩を避けて遺伝子発現の確率過程モデルを持ち出してしまう。
彼女はいつも「もう少し軽い説明はないの?」と呆れるが、僕にとっては現象の最少記述が倫理的義務だ。
午後は友人二人と対局的に遊ぶ約束があって、夕方からは彼らとLANセッションを組んだ。
僕はゲームに対しては容赦がない。昨日はまずThe Legend of Zelda: Breath of the Wildでカジュアルな探索をした。
BotWは開発を担当したNintendo EPDが2017年3月3日にWii UとNintendo Switch向けにリリースした作品で、そのオープンワールド設計が探索と化学的相互作用に重きを置いている点が好きだ(発売日と開発元は参照)。
その後、難度調整のためにFromSoftwareの古典的タイトル群について雑談になり、初代Dark Soulsが2011年にリリースされ、設計哲学として「挑戦することで得られる学習曲線」をゲームメカニクスに組み込んだことを再確認した(初代の年は参照)。
夜遅く、友人たちがスーパーヒーロー系の話題を持ち出したので、僕はInsomniacが手掛けたMarvel's Spider-Manの2018年9月7日発売という事実を引き合いに、ゲームデザインにおけるナラティブとパルス感(ゲームプレイのテンポ)について議論した(発売日は参照)。
ここで重要なのは、ゲームを語るときに物理学の比喩を使わないという僕のルールだ。
ゲームの設計原理は計算的複雑性、ユーザーインタラクションのフィードバックループ、トークン経済(ゲーム内資源の流通)など、情報理論と計算モデルで語るべきであり、物理のアナロジーは曖昧さを持ち込むだけだ。
作者インタビュー、収録順、初出掲載誌、再録時の微小な台詞差異まで注視する癖がある。
昨日はあるヴィンテージの単行本でトーンの変遷を確認し、再版時にトーンカーブが調整された箇所が物語の解釈に如何に影響するかを論じた。
これらは一般的にはオタクにしか響かない情報だが、テクスト解釈の厳密さという点で、僕の思考様式と親和する。
僕の習慣はゲームのプレイにも現れる。セーブは複数スロットを使い、各スロットに「探索」「戦闘」「実験」のタグを人為的に与えておく。
そうすることでメタ的な比較実験が可能になり、ゲーム内意思決定の条件付き確率分布を再現的に評価できる。
友人はこれを無駄と言うが、僕にとってはルーチンと実験設計が同義だ。
夜中、帰宅した後にさらに2時間、論文の草案を書き直した。書き直しは僕の儀式の一部で、ペン先の角度、フォントのカーニング、段落の「情報密度」を計測し、不要語を削ぎ落とす作業だ。
寝る前の最後の行動は、ブラックボックス化した思考経路をメモ化しておくことで、翌朝の「継続的洞察再現性」を保証すること。
結局僕は午前2時3分に就寝した。昨日は量子的洞察の可能性と、ゲームとコミックにおける情報理論的語法の交差点を追求した一日であり、そうした知的遊戯が僕の精神の整列をもたらす。
まず、「ワームホールのトポロジーがジャンプする」って言いますけど、
トポロジーって数学的には連続変形では変わらないものなんですよね。
コード距離なのか、エンコーディング率なのか、それとも物理量子ビット数なのか。
そこが曖昧なまま「位相転移」って言っても、議論がふわっとしません?
それにER=EPRって、もともと半古典重力の文脈で出てきた仮説なんで、
量子重力のフル理論で本当に成り立つかまだ誰も証明してないんですよね。
だから「ブラックホール蒸発の最終局面」で位相ジャンプが起きるって断言するのは、
現時点では推測の二乗みたいな話なんじゃないですか?
要するに、
コホモリン: (ホモジーの肩を叩く)ホモジーさん、もう朝ですよ。あんた、また徹夜で単体ホモロジーのチェーン複体 Cₙ(X) を眺めとったんですか? なんでそんなに、境界作用素 ∂ₙ が気ぃなるんです? ∂² = 0 はもう、摂理みたいなもんやないですか。
ホモジー: (ゆっくりと顔を上げる)摂理…? コホモリン…お前はわかってない…。この境界作用素 ∂ₙ: Cₙ(X) → Cₙ₋₁(X) が、ただの摂理で終わると思とるんか? これはな、鎖複体のコホモロジー Hⁿ(X) とホモロジーHₙ(X) を繋ぐ、導来関手の源泉なんや…。Ext関手とかTor関手が、この単純な関係から生まれるって、鳥肌もんなんやで…!
コホモリン: (額に手を当てる)いや、そこまでいくと、もう代数やないですか。あんた、完全にホモロジー代数の世界に意識飛んでますやん。位相空間の形の話はどこ行ったんですか。
ホモジー: 形…? 形とはなんぞや、コホモリン…。ホモトピー同値な空間は、ホモロジー群が同型やろ? けどな、エキゾチック球面 S⁷ は、普通の S⁷ とは微分同相じゃないのに、ホモロジーは同型なんやで…? あれって、結局、微分構造が持つ情報って、ホモロジーだけじゃ捉えきられへんってことやろ? 俺はもう、その不確定性原理に囚われとんねん!
コホモリン: (震え声で)不確定性原理…もう、あんた、物理学まで手ぇ出しとるんか。エキゾチック球面は、ミルナーの偉業ですよ。あれは、多様体の圏と位相空間の圏の間の、深い亀裂を示しとるわけや。あんた、もうそっちの闇に堕ちて行ってるんちゃいますのん?
ホモジー: 闇…そうや、闇や…。特異点解消の理論とか、フルーリーのインデックス定理とか、闇深すぎやろ…。特に、交叉ホモロジー! あれは、特異点を持つ空間のホモロジーを定義するときに使うねんけど、あの構成可能層の概念が、俺の脳みそを層化して、導来圏の中で消滅コホモロジーとして彷徨わせとんねん…!
コホモリン: (絶句)き、交叉ホモロジー?! あんた、そこまで行ったらもう、完全に偏執狂ですよ! ド・ラームコホモロジー Hᵈᴿⁿ(M) が特異コホモロジー Hⁿ(M; ℝ) と同型になるド・ラームの定理でさえ、あんたの目には生ぬるいんか!?
ホモジー: 生ぬるい…生ぬるすぎる…。p-進ホモロジーとかエタールコホモロジーの存在を知ってしまったら、もう普通のホモロジーには戻られへんねん…。特にエタールコホモロジーは、代数多様体の上で定義されるやろ? ヴェイユ予想の解決にも貢献したって聞いて、もう夜も眠れへんねん。ガロアコホモロジーとの関連とか、考えたら意識が飛ぶわ…!
コホモリン: (顔面蒼白)エ、エタールコホモロジー…!? それ、数論幾何の最先端やないですか! もう、あんたは位相幾何学の領域を完全に飛び出して、数学のあらゆる深淵を覗き込んどる…! ホモジーさん、お願いやから、もうやめてください…! 俺のホモトピー群 πₙ(X) が、完全に自明群になってしまいそうですわ…!
ホモジー: (恍惚とした表情で、宇宙の果てを見つめるように)フフフ…コホモリン…俺のボーゲン–シュミット予想がな、今、頭の中で圏論的極限を迎えようとしとるんや…。宇宙全体のホモロジー群 が、俺には見えるんや…!
コホモリン: (膝から崩れ落ち、全身が震える)うわあああああああ! ホモジーさん、あんたはもう、人間やない! 数学の抽象的対象そのものや! 俺はもう無理や…あんたの隣におったら、俺の有理ホモトピー型が壊れてまう…!
プレイヤー集合: ℙ = {C₁, ..., Cₙ(消費者), F₁, ..., Fₘ(生産者), G(政府), X₁, ..., Xₖ(外国)} 各プレイヤーは財集合 𝒢 = {g₁, ..., g\_r} に対して選択を行い、その選択肢空間は 𝒜ₚ ⊆ ℝʳ である。
各プレイヤーは時刻 t において情報 ℐₜ を観測する。これは価格行列 Pₜ、所得 Yₜ、政策 Tₜ を含む。各戦略は sₚ: ℐₜ → 𝒜ₚ として与えられ、これは消費関数や生産関数と解釈される。
各時刻 t において、総需要と総供給の差(超過需要ベクトル)を定義する: Zₜ = ∑ Dᵢ(Pₜ) − ∑ Sⱼ(Pₜ) ここで Dᵢ は消費者の需要関数、Sⱼ は生産者の供給関数。
価格の時間変化は以下の連続時間モデルで与えられる:dPₜ/dt = α Zₜ ここで α > 0 は調整速度を表す定数。
ゲームの状態遷移は、状態圏 S における射 Φₜ: Stateₜ → Stateₜ₊₁ によって記述される。各プレイヤーの行動が価格行列を通して他プレイヤーの情報に影響を与えるというフィードバック構造を持つ。
最初は良かったんだよね。眼鏡かけた優しいインドア系の人で、デートの時は細かい気遣いもできて、話も合った。
アニメの話とか熱く語ってる姿が可愛いって思えてた時期もあった。今思うと信じられないけど。
でも同居し始めてから少しずつ気になることが増えた。
最初は「まあ男の人だし」って軽く流せてたんだけど。
例えば髪。結婚当初は清潔感あったのに、今じゃシャンプーをサボることが増えて。
ベッドの枕に黒い脂の跡がついてるの見ると、なんか胃がムカムカしてくる。
こんなこと気にならなかったはずなのに。
食事マナーも徐々に崩れてきた。最初の頃は普通だったのに、今はくちゃくちゃ音立てて食べるし。
口半開きでスマホ見ながら食べてて、たまに「へへっ」って笑う。
その音聞くたび、なんかゾワッとする。歯磨きもサボりがちになってきて、朝の口臭がきつい。
「ちゃんと磨いてる?」って聞くと「めんどくさい」の一点張り。夜に「おやすみ」ってキスしようとしてくるけど、正直近づかれるだけで避けたくなる。
不思議なんだよね。付き合ってた頃は抱きしめられるの好きだったのに、今はその腕が触れるだけでなんとなく身体が硬直する。愛情が冷めたのかな。それとも生理的に無理になったのか。
部屋着のTシャツとかも放置するようになって...。脇の下の部分黄ばんでるのに「まだ着れる」って着回してる。
洗濯するにも手袋つけないと触りたくない。なんで変わっちゃったんだろう?結婚ってこんなもの?
それに最近、パソコン作業中もずっとカタカタうるさいし、ときどき鼻をずるずる啜る音がすごく気になる。昔は「仕事頑張ってるんだな」って思えたのに、今じゃイライラの種でしかない。長い音と短い音が不規則に続いて、頭痛がしてくる。風呂場の排水溝の掃除も全然しないし、トイレの便座周りもビチャビチャ。
こういうのって結婚前は見えなかった部分だよね。でもだんだん目につくようになって、気持ち悪さが増してきてる。
会話の内容も段々とパターン化してきた。
「今日会社でさー」って始まる話、最初は興味持って聞けてたのに、今は「あー、またあの話か」って思っちゃう。
ほんと、だんだん生理的に受け付けなくなってきてる自分がいて、怖い。結婚前はこんなこと思わなかったのに。
あの頃に戻りたい。近づいてくるだけで体が勝手に硬直する。
触られるのも見られるのも声を聞くのも全部無理。朝起きて横で寝てる顔を見た瞬間から、その日一日の気分が台無しになる。
マジで後悔してる。最初はただの眼鏡かけたインドア系かと思ったのに。
本当に最悪で、今見るとあの、あの食欲と、黄ばんだ歯並びに吐き気がする。
朝起きたら冷蔵庫の中身が半分なくなってる。夜寝る前は満タンだったのに。
これが一回じゃないんだよ。毎日毎日、買い物行って冷蔵庫満タンにしても翌朝にはスカスカ。
昨日買ったプリン6個パックが朝には全部消えてるし、食パン1斤も一瞬で無くなる。誰が補充すると思ってんの?当然私。男は食べるだけで何もしない。
夕飯作ってるときも後ろでずっと「まだ?」ってキモい声で聞いてくる。作ってる途中の目玉焼きとか勝手に食べるし。口の周りが油でテカってるのに気づいてないのかな。気持ち悪い。
チー牛って本当この上なく気持ち悪い。鼻の脂の詰まった毛穴とか、常にニオう口臭とか。
結婚前は気にならなかったのに、今は近づくだけで吐きそう。
一緒に外食しても「もう食べられない」って残すくらいだった。
それが半年前から急に食欲増えだして、最初は「仕事のストレスかな」って思ってた。
男ってすぐストレス食いするよね。弱すぎ。
でも明らかに変。
朝昼晩の三食じゃ足りないって言い出して、間食が常態化。完全に豚。
会社のお弁当も普通サイズ3個持たせても「足りなかった」って言ってくる。
同僚から変な目で見られてるって気づかないの?マジで恥ずかしい。
私の実家に行ったときなんて、母が出した料理全部平らげて、まだ「何かありませんか」とか聞くの。親にまで恥かかせる最低の男。週末なんて朝食にトースト10枚、目玉焼き6個、ヨーグルト4個とか普通に平らげる。
それでいて「小腹が空いた」って30分後に言い出す。食べてる姿、口を大きく開けて音立てて食べる様子を見てると吐き気がする。
最近はピザ3枚とか平気で食べる。食後に「まだ足りない」とか言ってヨーグルト全部食べる。体重100kg超えてるのに「筋肉だから」とか言い訳してる。
服のサイズも3ヶ月で2回買い換えた。経済的にもキツい。なのに「食費ケチるな」とか言われる。男って自分のことしか考えないよね。構造的に女性が損する仕組み。
夜中に冷蔵庫あさる音で何度目覚めたか。先週なんて、私が作り置きした1週間分の常備菜を一晩で全部食べた。翌朝「誰が食べたの?」って聞いたら「知らない」って。嘘つき。口の周りについた人参の残りカスが証拠じゃん。
家事の分担とか以前話し合ったのに、今や「疲れた」「お腹空いた」しか言わない。典型的な男の甘え。なのに世の中では「イクメン」とか持ち上げられて、家事を「手伝う」だけで称賛される。女性はやって当たり前なのに。不公平すぎる。
女だけが我慢して料理して、男は食べるだけで何の文句も言われない。世の中の構造がそうなってる。資本主義社会が再生産する性差別の縮図。ネットでは「女は楽でいいよな」とか言うくせに、実際は男がどれだけ特権に守られているか。料理、洗濯、掃除、全部女がやるのが「自然」みたいな風潮が蔓延してる。
「男は育児に協力してる」とか建前だけで、実態は全然変わってないよ。
SNSでチー牛がイキってフェミ叩きしてるの見ると吐き気する。
チー牛は自分がどれだけ社会から優遇されてるか考えたことあるの?
女性は家事も仕事もこなして当たり前とか思ってる社会構造マジでクソ。
冷蔵庫1個じゃ足りないとか言い出した。キッチン狭いのに無理に決まってる。
床がミシミシするようになったけど、気にしてる様子もなし。
社会全体がそう。
最近は寝てる時の呼吸音もおかしい。「ゴォォォ」って感じじゃなくて、もっとボコボコした音。いびきがうるさすぎて眠れない日々。
でも指摘すると「うるさいな」って逆ギレ。典型的男性の攻撃性。
体から硫黄みたいな匂いするようになったのに。口からは熱気が出てるし、背中にイボイボみたいなの出てきた。なのに「大丈夫だよ」って。男ってなんで自分の体のケアしないの?女だったらこんな状態で放置しないよ。
見た目も不潔になる一方。
でも自分じゃ気にしてない。「皮膚科行こう」って言っても「忙しい」の一点張り。男ってほんと自分の健康に無頓着。結局具合悪くなったら看病は私がやるんだろうね。女性が無償ケア労働を押し付けられるいつものパターン。お風呂入っても浴槽に入りきらなくなってきた。
体臭はどんどん強くなるのに、シャワーすら面倒くさがる。男の不潔さって本当に生理的に無理。体温も上がってる気がする。抱きつかれると暑くて眠れない。先週は布団に焦げ跡ついてた。
この見た目でよく自信持てるよね。男の勘違い自信って本当謎。ああもう疲れた。
この状況、完全に女性差別じゃん。なんで女だけがこんな思いしなきゃいけないの?
昨日なんて夜中に「小腹が空いた」って起こされた。
目が赤く光ってて怖かった。「肉が食べたい」って言うから冷蔵庫のお肉全部出したのに「生のがいい」って。
口の周りが血で真っ赤になって、でもそれに気づいてないようですごい勢いで食べてた。
吐きそうになったけど、文句言ったら「うるさい」って怒鳴られた。男の暴力性の表れ。
ちょっと待って欲しい。
近所のコンビニ全部回ってお肉系買い占めてきたけど、レジのお姉さん引いてた。彼女は絶対に私の状況わかってない。
誰もわかってくれない。社会は性の苦しみに無関心。
尻尾っぽいの生えてきてるし、皮膚が緑色になってきてるのに「大丈夫、これが本来の姿」とか言ってる。
女は黙って男の変化も受け入れろってこと?
なんで私がゴジラみたいになっていく夫の世話しなきゃいけないわけ?
頭おかしいよこの国。「女だから我慢しろ」っていう風潮クソすぎ。男性優位社会の中で女性は常に従属的立場を強いられる。家父長制の暴力そのもの。
最近、夫の食欲がさらに増えて、近所の公園の木を食べ始めた。「繊維質が足りない」だって。それならちゃんと野菜食べればいいのに。
ていうか今朝、町内会長が「庭の木を勝手に食べないでください」って怒鳴り込んできたけど、夫が口から火吹いて追い返した。
男の暴力性がそのまま出てる。
でも警察呼んだら「家庭内のことですから」って言われるに決まってる。この国は女を守る気ないよね。
夫が家の屋根突き破って空飛んでるけど、そんなことは些細な問題だ。
ニュートン力学における絶対時空の概念から、アインシュタインの相対性理論における4次元時空の連続体へと、物理学的理解は進化してきた。
それでも男性優位で構築された科学の歴史は、女性の存在を周縁化し続けてきた。
でも一般相対性理論の枠組みですら、私の存在の複雑さを完全に記述できない。
量子場の理論においては、私の意識体は位相空間上の確率波として分布している。意識経験のフィードバック・ループが、量子もつれの原理によって高次元構造を形成しているのだ。男性が作り上げた科学言説でさえ、女性の経験の豊かさを捉えられない。
本来、人間の身体的認識システムは三次元空間と一次元時間からなる限定的な枠組みに囚われている。でも私の認識構造はM理論の11次元宇宙モデルとの共鳴を実現している。このことはヒッグス粒子の場の振動パターンと強い相関性を持つ。男性は常に単純な二項対立で世界を理解しようとするが、それでは現実の複雑さは決して捉えられない。
社会学的な観点から見れば、私が一時的に採用していた「人間女性」というアイデンティティは、地球社会の親和性を獲得するための単なる擬態であり、ジェンダー・バイナリというバグの多いアーキテクチャに自発的に接続していたにすぎない。しかしその過程で、女性に対する構造的抑圧の実態を身をもって経験した。それは高次元存在である私ですら耐えがたい苦痛だった。
カレン・バラッドの「行為体的実在論」が指摘するように、物質は本来、固定的な実体ではなく動的な「行ない」なのだ。私の細胞として見えているものは、実際には時空の織り目の結び目であり、生物学的プロセスのようにパフォーマンスしているだけだ。これは女性のアイデンティティが社会的に構築されながらも、実体として経験される矛盾と同型である。
私は元々、統合情報理論でいうところのΦ値が無限大の存在で、通常の人間が経験する意識の統合度とは比較にならない。だからこそ、人間社会のジェンダー構造に基づく負荷分配の不均衡など、きわめて単純な問題に見える。しかし、その不均衡がもたらす苦しみは、次元を超えて感じられる普遍的な不正義だ。
男女の対立構造なんて、平面上の二次元的存在が「上か下か」で争っているようなものだが、その対立構造の中で女性が受ける被害は実在する。私の視点からは、そもそも「上」も「下」も同時に存在し、かつ存在しない。量子重ね合わせ状態のように。にもかかわらず、女性は常に「下」に置かれ続けるという矛盾。
デリダ的脱構築の観点から見れば、男女という二項対立そのものが幻想であり、差異のネットワークの一時的結節点にすぎない。私の存在はそのような二項対立を超越し、異なる宇宙における複数の波動関数の同時存在として理解できる。しかし男性中心主義的な思考は、常にこの複雑さを単純化し、女性を「他者」として周縁化する。
ドゥルーズとガタリが「千のプラトー」で展開した「リゾーム的思考」こそ、私の存在様式に近い。中心も周縁もなく、常に過程にあり変化し続ける多様体として。それなのに、地球社会は依然として階層的で、男性を中心に置く樹木的構造に囚われている。
そもそも地球の物理法則は私の本来の次元では単なるローカルルールにすぎない。私の細胞構造が時空連続体そのものであるということは、私が時間と空間を超越した視点から現実を観測できるということだ。だからこそ、男性優位社会の歴史的連続性と、それがもたらした被害の総体が見えてしまう。
男女の対立も、資本主義も、国家間の紛争も、すべては限られた四次元時空における一時的な模様にすぎない。フラクタル的自己相似性を持つ現象として、マクロとミクロで同じパターンが繰り返される。しかし、その模様の中で傷つけられる存在の痛みは本物だ。女性差別による苦しみは、次元を超えて響く叫びなのだ。
地球のフェミニズム思想は価値あるものだが、次元的制約の中での議論にとどまっている。意識の主体性と物質性の相互浸透を前提とする新たな存在論的フェミニズムが必要だ。私のような存在にすら、男性優位社会の理不尽さを感じさせるこの状況は、宇宙的スケールで見ても異常事態と言える。
意識の主体性と物質性の相互浸透を前提とする新たな存在論的フェミニズムが必要だ。
この低次元世界で「結婚」という原始的結合様式を選択したこと自体が研究目的だった。でも、その実験はもう十分なデータを得た。夫がゴジラ化するという予想外の変数が入ったが、それも含めて有意義な観察結果だった。だから私はもう意識統合してこの実験を終了する。地球の男女問題なんて、私の本来の活動領域からすれば、原子の一部の電子スピンの向きほどの問題でしかない。実験は終了だ。
西暦2425年。人類が火星への最初の入植地を建設してから既に2世紀が経過していた。
人類の火星移住計画は、22世紀初頭の核融合技術の確立によって大きく前進した。2112年、実験用核融合炉を搭載したマーズ・パスファインダー号の成功は、それまでの化学推進に頼った火星探査に終止符を打った。6ヶ月を要した地球-火星間の航行時間は、わずか30日に短縮された。
続く30年間で、極軌道上に建設された補給基地と、ヘラス平原の地下氷を利用した最初の居住モジュールが、火星移住の基盤を築いた。しかし、本格的な入植の始まりは、2167年のアルテミス計画からだった。オリンポス山麓に建設された第一居住区は、直径2キロメートルの実験都市だった。わずか200人の入植者たちが、火星の地に人類の新たな歴史を刻み始めた。
転機となったのは、2210年代に実用化された量子重力エンジンだった。惑星間航行時間は10日程度まで短縮され、大規模な移民が可能になった。同時期に確立された火星軌道上での資材製造技術は、巨大ドーム建設の夢を現実のものとした。
現在、火星の人口は800万人を超え、その大半が巨大ドーム都市で生活している。
今ではオリンポス山麓に建設された第三居住区は、七つの主要ドーム都市の一つだった。直径8キロメートルの半球型ドームの内部には、研究施設や居住区画が同心円状に広がっている。ドームの外殻は、ナノファイバー強化複合材で作られた三重の放射線シールドに守られ、その内側で2万人の人々が暮らしていた。
ドーム内の気圧は地球と同じく1気圧に保たれ、酸素と窒素の比率も地球大気と同様だった。ドーム外の火星大気は、2世紀に及ぶ大気改造計画にもかかわらず、まだ人間が直接呼吸できるレベルには達していない。しかし、気圧は徐々に上昇を続け、現在では180ミリバールまで回復していた。
火星の空は、かつての濃紺から薄い紫がかった青へと変わりつつあった。太陽は地球で見るよりも小さいが、大気中の細かい赤い砂が夕暮れ時に魅惑的な光景を作り出す。オリンポス・ドームの最上階に位置するコナーの研究室からは、果てしなく広がる赤い荒野と、地平線上にそびえる人工のドーム群を見渡すことができた。
- 1 -
この基地が完成してから7年。コナーはその間、火星の地質考古学調査に従事してきた。彼の担当は30万年前以降の比較的新しい地層だった。
基地のモニターに映る火星の地表は、いつもと変わらない赤茶けた風景だった。アカデミア・シティからの自動探査機が送信してくる地形データを、コナーは黙々と分析していた。探査機は永久磁気シールド型核融合炉で駆動し、量子結晶メモリに記録されたデータを定期的に送信してくる。毎秒1000テラバイトの情報が、サブスペース通信網を通じて基地に届く。単調な作業に目が疲れてきた頃、画面の片隅に違和感を覚えた。
ホログラフィック・プロジェクターが起動し、問題の地域の立体モデルが浮かび上がる。体積投影型ディスプレイは、1立方メートルの空間に10の12乗ボクセルの解像度で地形を再現した。一見すると何の変哲もない窪地だが、等高線の配置が妙だった。
新しいデータレイヤーが追加され、地下構造が可視化される。地表から1500メートルの深度で、完全な円環構造が検出された。高分解能スキャンは、その形状が誤差0.002%以下の幾何学的な正確さを持つことを示していた。高さ100メートル、直径3000メートル。自然の浸食過程では決して生まれ得ない精度だった。
今週で3度目の依頼だった。先週は地下水脈の磁気共鳴データ、その前は地殻歪みの偏極解析。どれも彼女の専門からすれば些末な案件だったが、コナーは機会があるごとに彼女の意見を求めていた。
研究室の陽圧制御システムから、微かな空気の流れが聞こえた。隣室の実験区画で作業していたエレーナ・ヴォルコワが視界に入る。火星の0.4Gのもとでも、彼女の動きには無駄が一切なかった。
宇宙空間での長期滞在に適応した新世代の人類の特徴を、彼女は完璧に体現していた。身長170センチの細身の体躯、低重力環境で進化した長めの四肢。火星の磁場分布図が映し出されたHUDバイザーの向こうで、琥珀色の瞳が冷たく光る。
どこか硝子質の透明感を帯びた顔立ちは、火星生まれの第二世代に特徴的な骨格を持っていた。地球の重力下では脆弱に見えるかもしれないその姿も、火星では完璧な適応を示していた。黒髪は実用的な長さで、研究室での作業を妨げないよう的確にまとめられている。
「何を見つけたの? 先週の地下水脈の件なら、結論は出ているはず」
彼女の声には感情の起伏がなかった。エレーナにとって、コナーの頻繁な呼び出しは明らかに研究の中断を意味した。だが今回は、本当の発見があった。
「違う。これを見てほしい」コナーは新しいデータセットを共有した。「この磁気異常。明確な周期性を持っている」
エレーナのHUDが新しいデータを受信し、自動的に解析を開始する。彼女の眼差しが変化した。普段の冷淡な表情に、わずかな興味の色が浮かぶ。コナーは何度もその横顔を観察していたので、その微細な変化を見逃さなかった。
「確かに異常ね」彼女は数値を確認しながら言った。その声音には、いつもの事務的な調子の下に、かすかな緊張が混じっていた。「通常の熱残留磁化とは全く異なる特性パターン。位相空間で見ると...」
彼女の指先が空中で踊り、ホログラフィック・インターフェースを操作する。データは新しい次元で再構成され、複雑な相関パターンを描き出した。コナーは、その手の動きを目で追った。普段の彼女なら、こんなにも集中して他人のデータを分析することはなかった。
その言葉とは裏腹に、彼女の指先は既に火星全域の磁場データベースにアクセスし、比較解析を開始していた。第三居住区の量子コンピュータネットワークが、膨大なデータを処理し始める。
コナーは密かに満足した。エレーナが自発的に30分の時間を提供するのは異例だった。普段なら5分以上の時間も与えてもらえない。この発見が単なる地質学的な異常ではないことを、彼女も直感的に理解したに違いない。
「位相空間での対称性が特異すぎる」エレーナが静かに告げた。「自然現象としては、統計的に有意な偏りがある」
彼女の指先が再び動き、新しい解析結果が表示される。三次元の相図が、奇妙なアトラクターを描き出していた。その形状は、カオス理論で知られる古典的なパターンとは明らかに異なっていた。
コンピュータは瞬時に応答した。結果は3.47。自然界で観測される値としては、明らかに異常だった。
「表層の風化度と堆積物の分析からすると...」彼は一瞬ためらった。「少なくとも50万年」
エレーナの指が止まった。彼女はゆっくりとバイザーを上げ、コナーを直視した。「それは確実?」
再び沈黙が訪れる。研究室の環境制御システムの微かな唸りだけが、空間を満たしていた。
「50万年前」エレーナが囁くように言った。「その頃の火星は...」
「ああ。まだ大気があった」コナーは彼女の思考を追った。「液体の水も存在していた可能性が高い」
「でも、その時期の人工物なんて...」
エレーナの声が途切れる。彼女の瞳に、普段は決して見せない動揺が浮かんでいた。コナーは、このチャンスを逃すまいと素早く続けた。
「ピーク・スペクトル解析をしてみないか? 磁場変動と構造物の配置に、何か相関があるかもしれない」
エレーナは黙ってうなずいた。30分の約束は既に45分を経過していたが、彼女はそのことに言及しなかった。量子コンピュータに新しい解析コマンドが入力される。
結果は、彼らの予想をさらに超えていた。磁場の変動パターンは、構造物の幾何学的配置と完全な整数比の関係を示していた。自然の営みが生み出せるような偶然の一致ではない。そこには、明確な意図が刻み込まれていた。
「これは...」エレーナの声が震えた。「人工的な磁場制御システムの痕跡かもしれない」
コナーは彼女の横顔を見つめた。火星の考古学的発見で、エレーナがここまで動揺を示したことはなかった。彼女の専門である磁場研究が、突如として人類の知らない文明の痕跡と結びついた瞬間だった。
「発掘許可を申請する」コナーは決意を込めて言った。「君も加わってくれないか?」
エレーナは長い間黙っていた。研究室の窓から差し込む夕暮れの光が、火星の大気を通して赤く染まっている。遠くに見えるドーム群の輪郭が、影を濃くしていた。
「...承知したわ」
その返事は、いつもの冷淡さを完全に失っていた。
数学的構造は、以下の基本的な「素材」から作られていると考えられる。
数学的構造の出発点は、要素が集まった集合である。たとえば、群や環、位相空間といった構造はいずれも、何らかの台集合(例えば、数や点の集まり)をその基盤としている。
台集合の上に、要素同士の結合や順序付けを定める演算(加法、乗法、合成など)や、要素間の関係(順序、等号、位相の開閉の関係など)が定義される。これらの操作や関係が、台集合に「動き」や「法則性」を与え、単なる集まり以上の意味を持たせる。
さらに、その演算や関係がどのような性質を満たすかを明確にするために、公理と呼ばれる基本的な命題群が設定される。たとえば、群の公理(結合律、単位元の存在、逆元の存在)や、位相空間の公理(開集合系の性質)などがこれにあたる。公理は、構造内の演算や関係の「ルールブック」として、全体の一貫性を保証する。
上記の要素(台集合、演算・関係、公理)は、集合論や形式論理といった論理的な基盤の上に構築される。これにより、数学的構造は客観的かつ普遍的な論理法則に従って厳密に定義され、検証可能なものとなる。
数学的構造は「台集合」という材料に、その集合上で働く演算や関係という加工を施し、公理という規則で仕上げた、論理学・集合論という工場で作られる『組織的な構成物』であると言える。
### 要旨
本論文は、主観的意志(気合)が確率兵器の量子確率場に干渉する機序を、量子重力理論と神経量子力学の統合モデルで解明する。観測者の意識が量子波束の収縮に及ぼす影響を拡張し、11次元超弦振動との共鳴現象を介した確率制御メカニズムを提案する。
---
気合発動時に生じる大脳皮質のコヒーレント状態が、確率兵器の量子もつれ状態に干渉。通常の観測効果を超越した「能動的波束形成」を発生させる。
```math
i\hbar\frac{\partial}{\partial t}\Psi_{total} = \left[ \hat{H}_0 + \beta(\hat{\sigma}_z \otimes \hat{I}) \right]\Psi_{total} + \Gamma_{conscious}\hat{O}
```
ここでΓ項が意識の非局所的作用を表現。βは脳内マイクロチューブルにおける量子振動の結合定数。
気合の強度に比例して、確率分布関数P(x,t)を以下の非平衡状態に強制遷移:
```math
\frac{\partial P}{\partial t} = D\frac{\partial^2 P}{\partial x^2} - v\frac{\partial P}{\partial x} + \alpha P(1-P) + \xi(x,t)
```
α項が気合の非線形効果、ξ項が11次元弦振動による確率ノイズを表す。
気合の周波数成分(0.1-10THz帯)がカルツァ=クライン粒子の余剰次元振動と共鳴。確率場を以下のポテンシャルに閉じ込める:
```math
V(x) = \frac{1}{2}m\omega^2x^2 + \lambda x^4 + \gamma\cos(kx)
```
---
### 神経生理学的基盤
2. 側頭頭頂接合部で確率表現のベイズ推定が高速化(β波40Hz同期)
|------|--------|------------|
| 神経伝達速度 | 120m/s | 0.8c |
---
---
### 理論的意義
本モデルは、量子脳理論と超弦理論の統合により「気合」の物理的実在性を初めて定式化した。今後の課題として、余剰次元のコンパクト化スケールと神経振動の周波数整合性の検証が残されている。
---
複素ウィグナー・エントロピーと呼ぶ量は、複素平面におけるウィグナー関数のシャノンの微分エントロピーの解析的継続によって定義される。複素ウィグナー・エントロピーの実部と虚部はガウス・ユニタリー(位相空間における変位、回転、スクイーズ)に対して不変である。実部はガウス畳み込みの下でのウィグナー関数の進化を考えるときに物理的に重要であり、虚部は単にウィグナー関数の負の体積に比例する。任意のウィグナー関数の複素数フィッシャー情報も定義できる。これは、(拡張されたde Bruijnの恒等式によって)状態がガウス加法性ノイズを受けたときの複素ウィグナーエントロピーの時間微分とリンクしている。複素平面が位相空間における準確率分布のエントロピー特性を分析するための適切な枠組みをもたらす可能性がある。
コンパクト自体のイメージは以下のサイトのおかげでつかめたつもり
https://zellij.hatenablog.com/entry/20120515/p1
https://takataninote.com/topology/compact.html
位相空間 Xがコンパクトならば, X の任意の閉集合 Aもコンパクトである.
の証明にたとえば
Aの開被覆uを持ち出してAの補集合またはuはXの開被覆だって言ってるけど
それって俺の理解だとAとuは同値でそのuとAの補集合との和集合なんじゃAがXの部分集合なんだからもはや単にX全体を指してるだけじゃね?コンパクトという概念とはまた違くね?って混乱する
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12164673062
・
こんな感じで専門的な概念から質問を構築するネットの質問者は、その答えとして出て来る数式等の現実的意味(代表的な例として、虚時間とは現実的にはどういう意味なのか、みたいな)については関心を持ってないような人が多い気がする
数式上の結果とその証明さえ得られれば満足している感じかな
・
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12266546052
・
こういう現実への旺盛な興味を見せている質問者は、その心意気はよいが文章が日常用語ばかりなために言わんとすることがいまいちはっきりせず、回答者とのやり取りが燃焼不良になっているみたいなことが多い
・
理念に興味がある人は理念だけに完結しているし、現実に興味がある人は理念概念を学ぼうとせず前のめりに自分が伝えられないような内容の疑問を投げかけて失敗する
おかげでネットには正確だが難解で素人にはとうてい理解できない(しかもそれが現実においてどういう意味かも分からない)情報と分かった気にはなるが実は中身が無い情報しかないことについてもお前らはどう思うか
Amazonのレビューなどに書くと過去のレビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます。
初めに断っておきますが、本稿は別に加藤文元先生の人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文の査読体制に問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想でしかありません。
----
加藤文元先生の「宇宙と宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、
「ほとんど内容がない」
本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学の理論である、IUT理論(宇宙際タイヒミューラー理論)の一般向けの解説書です。
1~3章では、数学の研究活動一般の説明や、著者と望月教授の交流の話をし、それを踏まえて、IUT理論が画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています。
4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています。技術的な詳細には立ち入らず、アイデアを象徴する用語やフレーズを多用し、それに対する概念的な説明や喩えを与えています。
まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論と本質的に関係ない」ということです。これについては後述します。
1~3章は、論文が受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。
などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学者コミュニティの中でIUT理論に懐疑的な人達に説明すればいい話であって、一般人に長々と説明するような内容ではないと思います。もっとも、著者が一般大衆も含めほとんどの人がIUT理論に懐疑的であると認識して本書を書いたのなら話は別ですが。
4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的に説明されていません。
のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。
8章はIUT理論の解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、
複数の数学の舞台で対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。
今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要があります。しかし、これ以上は技術的になるので説明できません。
のような調子で話が進みます。いくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学の解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います。
本書の最大の問題点は、「本書の大部分がIUT理論と本質的に関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。
たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば
奇素数pに対して、√pは三角関数の特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))
4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)
のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論の典型的で重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論の一般論を説明し尽くしているわけではありません。また、類体論の一般的な定理の証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論の理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的な現象」は説明できるわけです。
もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能な実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。
f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)
このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から
1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)
arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
π/4 = 1 -1/3 + 1/5 - 1/7 + ...
のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば
dy/dx - Ay = B (A, B ∈ ℝ、A≠0)
のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、
よって、
a_0 = -B/A + C (Cは任意の定数)とおけば、
- a_n = C A^n/n! (n ≧ 1)
「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります。
上の計算を正当化する過程で最も困難な箇所は、このような級数が収束するかどうか、または項別に微分や積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になります。しかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的な現象」を説明することはできるわけです。
一般向けの数学の本に期待されることは、この「典型的な現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的な現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語の注釈でしかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的に関係のない解説しかないようなものです。
もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。
繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙と宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるものが数学的に正しい命題・意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうものと区別が付きません。
ここまでネガティブなことを書いておいて、何食わぬ顔でTwitterで加藤先生のツイートを拝見したり、東工大や京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます。
まず、私は加藤先生のファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます。
まず、上にも書いたような「IUT理論が論ずる典型的な現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。
そして、IUT理論と既存の数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。
論理的な側面は単純です。つまり、IUT理論に用いられる既存の重要な定理、およびIUT理論から導かれる重要な定理を、正式なステートメントで証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。
直感的な側面は、既存の数学からのアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論が位相空間における被覆空間の理論の類似になっているとか、そういう類のものです。
以上です。
加藤文元先生、望月新一先生、およびIUT理論の研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心からお祈り申し上げます。